No Arabic abstract
Single-mode Josephson junction-based parametric amplifiers are often modeled as perfect amplifiers and squeezers. We show that, in practice, the gain, quantum efficiency, and output field squeezing of these devices are limited by usually neglected higher-order corrections to the idealized model. To arrive at this result, we derive the leading corrections to the lumped-element Josephson parametric amplifier of three common pumping schemes: monochromatic current pump, bichromatic current pump, and monochromatic flux pump. We show that the leading correction for the last two schemes is a single Kerr-type quartic term, while the first scheme contains additional cubic terms. In all cases, we find that the corrections are detrimental to squeezing. In addition, we show that the Kerr correction leads to a strongly phase-dependent reduction of the quantum efficiency of a phase-sensitive measurement. Finally, we quantify the departure from ideal Gaussian character of the filtered output field from numerical calculation of third and fourth order cumulants. Our results show that, while a Gaussian output field is expected for an ideal Josephson parametric amplifier, higher-order corrections lead to non-Gaussian effects which increase with both gain and nonlinearity strength. This theoretical study is complemented by experimental characterization of the output field of a flux-driven Josephson parametric amplifier. In addition to a measurement of the squeezing level of the filtered output field, the Husimi Q-function of the output field is imaged by the use of a deconvolution technique and compared to numerical results. This work establishes nonlinear corrections to the standard degenerate parametric amplifier model as an important contribution to Josephson parametric amplifiers squeezing and noise performance.
High precision interferometers are the building blocks of precision metrology and the ultimate interferometric sensitivity is limited by the quantum noise. Here we propose and experimentally demonstrate a compact quantum interferometer involving two optical parametric amplifiers and the squeezed states generated within the interferometer are directly used for the phase-sensing quantum state. By both squeezing shot noise and amplifying phase-sensing intensity the sensitivity improvement of $4.86pm 0.24$ dB beyond the standard quantum limit is deterministically realized and a minimum detectable phase smaller than that of all present interferometers under the same phase-sensing intensity is achieved. This interferometric system has significantly potential applications in a variety of measurements for tiny variances of physical quantities.
We study theoretically how loss impacts the amplification and squeezing performance of a generic quantum travelling wave parametric amplifier. Unlike previous studies, we analyze how having different levels of loss at signal and idler frequencies can dramatically alter properties compared to the case of frequency-independent loss. We find that loss asymmetries increase the amplifiers added noise in comparison to the symmetric loss case. More surprisingly, even small levels of loss asymmetry can completely destroy any quantum squeezing of symmetric collective output quadratures, while nonetheless leaving the output state strongly entangled.
Non-linearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA), the only device in which the quantum limit has so far been achieved at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) non-linearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type non-linearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction non-linearity in the linear response regime. We then analyse gain saturation effect for stronger signals within semi-classical approach. Our results reveal non-linear effects of higher orders and their implications for operation of a JPA.
We theoretically study the angular displacements estimation based on a modified Mach-Zehnder interferometer (MZI), in which two optical parametric amplifiers (PAs) are introduced into two arms of the standard MZI, respectively. The employment of PAs can both squeeze the shot noise and amplify the photon number inside the interferometer. When the unknown angular displacements are introduced to both arms, we derive the multiparameter quantum Cramer-Rao bound (QCRB) using the quantum Fisher information matrix approach, and the bound of angular displacements difference between the two arms is compared with the sensitivity of angular displacement using the intensity detection. On the other hand, in the case where the unknown angular displacement is in only one arm, we give the sensitivity of angular displacement using the method of homodyne detection. It can surpass the standard quantum limit (SQL) and approach the single parameter QCRB. Finally, the effect of photon losses on sensitivity is discussed.
Josephson parametric amplifiers (JPA) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs, three of them exhibiting a hysteretic dependence of the resonant frequency versus the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices (dc-SQUID), which provide the JPA nonlinearity, for a finite screening parameter $beta_mathrm{L},{>},0$ and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.