Do you want to publish a course? Click here

Josephson Array Mode Parametric Amplifier

69   0   0.0 ( 0 )
 Added by Volodymyr Sivak
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a novel near-quantum-limited amplifier with a large tunable bandwidth and high dynamic range - the Josephson Array Mode Parametric Amplifier (JAMPA). The signal and idler modes involved in the amplification process are realized by the array modes of a chain of 1000 flux tunable, Josephson-junction-based, nonlinear elements. The frequency spacing between array modes is comparable to the flux tunability of the modes, ensuring that any desired frequency can be occupied by a resonant mode, which can further be pumped to produce high gain. We experimentally demonstrate that the device can be operated as a nearly quantum-limited parametric amplifier with 20 dB of gain at almost any frequency within (4-12) GHz band. On average, it has a 3 dB bandwidth of 11 MHz and input 1 dB compression power of -108 dBm, which can go as high as -93 dBm. We envision the application of such a device to the time- and frequency-multiplexed readout of multiple qubits, as well as to the generation of continuous-variable cluster states.



rate research

Read More

We have developed a Josephson parametric amplifier, comprising a superconducting coplanar waveguide resonator terminated by a dc SQUID (superconducting quantum interference device). An external field (the pump, $sim 20$ GHz) modulates the flux threading the dc SQUID, and, thereby, the resonant frequency of the cavity field (the signal, $sim 10$ GHz), which leads to parametric signal amplification. We operated the amplifier at different band centers, and observed amplification (17 dB at maximum) and deamplification depending on the relative phase between the pump and the signal. The noise temperature is estimated to be less than 0.87 K.
80 - Xin Chen , Jacob Zhang , Z. Y. Ou 2021
High gain parametric amplifier with a single-pass pulsed pump is known to generate broadband twin photon fields that are entangled in amplitude and phase but have complicated spectral correlation. Fortunately, they can be decomposed into independent temporal modes. But the common treatment of parametric interaction Hamiltonian does not consider the issue of time ordering problem of interaction Hamiltonian and thus leads to incorrect conclusion that the mode structure and the temporal mode functions do not change as the gain increases. In this paper, we use an approach that is usually employed for treating nonlinear interferometers and avoids the time ordering issue. This allows us to derive an evolution equation in differential-integral form. Numerical solutions for high gain situation indicate a gain-dependent mode structure that has its mode distributions changed and mode functions broadened as the gain increases.
Non-linearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA), the only device in which the quantum limit has so far been achieved at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) non-linearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type non-linearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction non-linearity in the linear response regime. We then analyse gain saturation effect for stronger signals within semi-classical approach. Our results reveal non-linear effects of higher orders and their implications for operation of a JPA.
242 - X. Zhou , V. Schmitt , P. Bertet 2014
We have developed and measured a high-gain quantum-limited microwave parametric amplifier based on a superconducting lumped LC resonator with the inductor L including an array of 8 superconducting quantum interference devices (SQUIDs). This amplifier is parametrically pumped by modulating the flux threading the SQUIDs at twice the resonator frequency. Around 5 GHz, a maximum gain of 31 dB, a product amplitude-gain x bandwidth above 60 MHz, and a 1 dB compression point of -123 dBm at 20 dB gain are obtained in the non-degenerate mode of operation. Phase sensitive amplification-deamplification is also measured in the degenerate mode and yields a maximum gain of 37 dB. The compression point obtained is 18 dB above what would be obtained with a single SQUID of the same inductance, due to the smaller nonlinearity of the SQUID array.
Degenerate parametric amplifiers (DPAs) exhibit the unique property of phase-sensitive gain and can be used to noiselessly amplify small signals or squeeze field fluctuations beneath the vacuum level. In the microwave domain, these amplifiers have been utilized to measure qubits in elementary quantum processors, search for dark matter, facilitate high-sensitivity spin resonance spectroscopy and have even been proposed as the building blocks for a measurement based quantum computer. Until now, microwave DPAs have almost exclusively been made from nonlinear Josephson junctions, which exhibit high-order nonlinearities that limit their dynamic range and squeezing potential. In this work we investigate a new microwave DPA that exploits a nonlinearity engineered from kinetic inductance. The device has a simple design and displays a dynamic range that is four orders of magnitude greater than state-of-the-art Josephson DPAs. We measure phase sensitive gains up to 50 dB and demonstrate a near-quantum-limited noise performance. Additionally, we show that the higher-order nonlinearities that limit other microwave DPAs are almost non-existent for this amplifier, which allows us to demonstrate its exceptional squeezing potential by measuring the deamplification of coherent states by as much as 26 dB.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا