No Arabic abstract
In this paper, we present a new open source toolkit for automatic speech recognition (ASR), named CAT (CRF-based ASR Toolkit). A key feature of CAT is discriminative training in the framework of conditional random field (CRF), particularly with connectionist temporal classification (CTC) inspired state topology. CAT contains a full-fledged implementation of CTC-CRF and provides a complete workflow for CRF-based end-to-end speech recognition. Evaluation results on Chinese and English benchmarks such as Switchboard and Aishell show that CAT obtains the state-of-the-art results among existing end-to-end models with less parameters, and is competitive compared with the hybrid DNN-HMM models. Towards flexibility, we show that i-vector based speaker-adapted recognition and latency control mechanism can be explored easily and effectively in CAT. We hope CAT, especially the CRF-based framework and software, will be of broad interest to the community, and can be further explored and improved.
In this paper, we present a new open source toolkit for speech recognition, named CAT (CTC-CRF based ASR Toolkit). CAT inherits the data-efficiency of the hybrid approach and the simplicity of the E2E approach, providing a full-fledged implementation of CTC-CRFs and complete training and testing scripts for a number of English and Chinese benchmarks. Experiments show CAT obtains state-of-the-art results, which are comparable to the fine-tuned hybrid models in Kaldi but with a much simpler training pipeline. Compared to existing non-modularized E2E models, CAT performs better on limited-scale datasets, demonstrating its data efficiency. Furthermore, we propose a new method called contextualized soft forgetting, which enables CAT to do streaming ASR without accuracy degradation. We hope CAT, especially the CTC-CRF based framework and software, will be of broad interest to the community, and can be further explored and improved.
End-to-end automatic speech recognition (ASR) models with a single neural network have recently demonstrated state-of-the-art results compared to conventional hybrid speech recognizers. Specifically, recurrent neural network transducer (RNN-T) has shown competitive ASR performance on various benchmarks. In this work, we examine ways in which RNN-T can achieve better ASR accuracy via performing auxiliary tasks. We propose (i) using the same auxiliary task as primary RNN-T ASR task, and (ii) performing context-dependent graphemic state prediction as in conventional hybrid modeling. In transcribing social media videos with varying training data size, we first evaluate the streaming ASR performance on three languages: Romanian, Turkish and German. We find that both proposed methods provide consistent improvements. Next, we observe that both auxiliary tasks demonstrate efficacy in learning deep transformer encoders for RNN-T criterion, thus achieving competitive results - 2.0%/4.2% WER on LibriSpeech test-clean/other - as compared to prior top performing models.
NeurST is an open-source toolkit for neural speech translation. The toolkit mainly focuses on end-to-end speech translation, which is easy to use, modify, and extend to advanced speech translation research and products. NeurST aims at facilitating the speech translation research for NLP researchers and building reliable benchmarks for this field. It provides step-by-step recipes for feature extraction, data preprocessing, distributed training, and evaluation. In this paper, we will introduce the framework design of NeurST and show experimental results for different benchmark datasets, which can be regarded as reliable baselines for future research. The toolkit is publicly available at https://github.com/bytedance/neurst/ and we will continuously update the performance of NeurST with other counterparts and studies at https://st-benchmark.github.io/.
Language understanding in speech-based systems have attracted much attention in recent years with the growing demand for voice interface applications. However, the robustness of natural language understanding (NLU) systems to errors introduced by automatic speech recognition (ASR) is under-examined. %To facilitate the research on ASR-robust general language understanding, In this paper, we propose ASR-GLUE benchmark, a new collection of 6 different NLU tasks for evaluating the performance of models under ASR error across 3 different levels of background noise and 6 speakers with various voice characteristics. Based on the proposed benchmark, we systematically investigate the effect of ASR error on NLU tasks in terms of noise intensity, error type and speaker variants. We further purpose two ways, correction-based method and data augmentation-based method to improve robustness of the NLU systems. Extensive experimental results and analysises show that the proposed methods are effective to some extent, but still far from human performance, demonstrating that NLU under ASR error is still very challenging and requires further research.
In this paper, we present Hitachi and Paderborn Universitys joint effort for automatic speech recognition (ASR) in a dinner party scenario. The main challenges of ASR systems for dinner party recordings obtained by multiple microphone arrays are (1) heavy speech overlaps, (2) severe noise and reverberation, (3) very natural conversational content, and possibly (4) insufficient training data. As an example of a dinner party scenario, we have chosen the data presented during the CHiME-5 speech recognition challenge, where the baseline ASR had a 73.3% word error rate (WER), and even the best performing system at the CHiME-5 challenge had a 46.1% WER. We extensively investigated a combination of the guided source separation-based speech enhancement technique and an already proposed strong ASR backend and found that a tight combination of these techniques provided substantial accuracy improvements. Our final system achieved WERs of 39.94% and 41.64% for the development and evaluation data, respectively, both of which are the best published results for the dataset. We also investigated with additional training data on the official small data in the CHiME-5 corpus to assess the intrinsic difficulty of this ASR task.