Do you want to publish a course? Click here

Guided Source Separation Meets a Strong ASR Backend: Hitachi/Paderborn University Joint Investigation for Dinner Party ASR

119   0   0.0 ( 0 )
 Added by Naoyuki Kanda
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we present Hitachi and Paderborn Universitys joint effort for automatic speech recognition (ASR) in a dinner party scenario. The main challenges of ASR systems for dinner party recordings obtained by multiple microphone arrays are (1) heavy speech overlaps, (2) severe noise and reverberation, (3) very natural conversational content, and possibly (4) insufficient training data. As an example of a dinner party scenario, we have chosen the data presented during the CHiME-5 speech recognition challenge, where the baseline ASR had a 73.3% word error rate (WER), and even the best performing system at the CHiME-5 challenge had a 46.1% WER. We extensively investigated a combination of the guided source separation-based speech enhancement technique and an already proposed strong ASR backend and found that a tight combination of these techniques provided substantial accuracy improvements. Our final system achieved WERs of 39.94% and 41.64% for the development and evaluation data, respectively, both of which are the best published results for the dataset. We also investigated with additional training data on the official small data in the CHiME-5 corpus to assess the intrinsic difficulty of this ASR task.



rate research

Read More

Language understanding in speech-based systems have attracted much attention in recent years with the growing demand for voice interface applications. However, the robustness of natural language understanding (NLU) systems to errors introduced by automatic speech recognition (ASR) is under-examined. %To facilitate the research on ASR-robust general language understanding, In this paper, we propose ASR-GLUE benchmark, a new collection of 6 different NLU tasks for evaluating the performance of models under ASR error across 3 different levels of background noise and 6 speakers with various voice characteristics. Based on the proposed benchmark, we systematically investigate the effect of ASR error on NLU tasks in terms of noise intensity, error type and speaker variants. We further purpose two ways, correction-based method and data augmentation-based method to improve robustness of the NLU systems. Extensive experimental results and analysises show that the proposed methods are effective to some extent, but still far from human performance, demonstrating that NLU under ASR error is still very challenging and requires further research.
In the FAME! Project, a code-switching (CS) automatic speech recognition (ASR) system for Frisian-Dutch speech is developed that can accurately transcribe the local broadcasters bilingual archives with CS speech. This archive contains recordings with monolingual Frisian and Dutch speech segments as well as Frisian-Dutch CS speech, hence the recognition performance on monolingual segments is also vital for accurate transcriptions. In this work, we propose a multi-graph decoding and rescoring strategy using bilingual and monolingual graphs together with a unified acoustic model for CS ASR. The proposed decoding scheme gives the freedom to design and employ alternative search spaces for each (monolingual or bilingual) recognition task and enables the effective use of monolingual resources of the high-resourced mixed language in low-resourced CS scenarios. In our scenario, Dutch is the high-resourced and Frisian is the low-resourced language. We therefore use additional monolingual Dutch text resources to improve the Dutch language model (LM) and compare the performance of single- and multi-graph CS ASR systems on Dutch segments using larger Dutch LMs. The ASR results show that the proposed approach outperforms baseline single-graph CS ASR systems, providing better performance on the monolingual Dutch segments without any accuracy loss on monolingual Frisian and code-mixed segments.
Despite the feature of real-time decoding, Monotonic Multihead Attention (MMA) shows comparable performance to the state-of-the-art offline methods in machine translation and automatic speech recognition (ASR) tasks. However, the latency of MMA is still a major issue in ASR and should be combined with a technique that can reduce the test latency at inference time, such as head-synchronous beam search decoding, which forces all non-activated heads to activate after a small fixed delay from the first head activation. In this paper, we remove the discrepancy between training and test phases by considering, in the training of MMA, the interactions across multiple heads that will occur in the test time. Specifically, we derive the expected alignments from monotonic attention by considering the boundaries of other heads and reflect them in the learning process. We validate our proposed method on the two standard benchmark datasets for ASR and show that our approach, MMA with the mutually-constrained heads from the training stage, provides better performance than baselines.
124 - Jian Wu , Zhuo Chen , Sanyuan Chen 2021
Speech separation has been successfully applied as a frontend processing module of conversation transcription systems thanks to its ability to handle overlapped speech and its flexibility to combine with downstream tasks such as automatic speech recognition (ASR). However, a speech separation model often introduces target speech distortion, resulting in a sub-optimum word error rate (WER). In this paper, we describe our efforts to improve the performance of a single channel speech separation system. Specifically, we investigate a two-stage training scheme that firstly applies a feature level optimization criterion for pretraining, followed by an ASR-oriented optimization criterion using an end-to-end (E2E) speech recognition model. Meanwhile, to keep the model light-weight, we introduce a modified teacher-student learning technique for model compression. By combining those approaches, we achieve a absolute average WER improvement of 2.70% and 0.77% using models with less than 10M parameters compared with the previous state-of-the-art results on the LibriCSS dataset for utterance-wise evaluation and continuous evaluation, respectively
We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا