Do you want to publish a course? Click here

Electronic structure investigation of GdNi using X-ray absorption, magnetic circular dichroism and hard x-ray photoemission spectroscopy

95   0   0.0 ( 0 )
 Added by Ashish Chainani
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at T = 25 K in the ferrimagnetic phase. We analyze the Gd M$_{4,5}$-edge ($3d$ - $4f$) and Ni L$_{2,3}$-edge ($2p$ - $3d$) spectra using atomic multiplet and cluster model calculations, respectively. The atomic multiplet calculation for Gd M$_{4,5}$-edge XAS indicates that Gd is trivalent in GdNi, consistent with localized $4f$ states. On the other hand, a model cluster calculation for Ni L$_{2,3}$-edge XAS shows that Ni is effectively divalent in GdNi and strongly hybridized with nearest neighbour Gd states, resulting in a $d$-electron count of 8.57. The Gd M$_{4,5}$-edge XMCD spectrum is consistent with a ground state configuration of S = 7/2 and L=0. The Ni L$_{2,3}$-edge XMCD results indicate that the antiferromagnetically aligned Ni moments exhibit a small but finite magnetic moment ( $m_{tot}$ $sim$ 0.12 $mu_B$ ) with the ratio $m_{o}/m_{s}$ $sim$ 0.11. Valence band hard x-ray photoemission spectroscopy shows Ni $3d$ features at the Fermi level, confirming a partially filled $3d$ band, while the Gd $4f$ states are at high binding energies away from the Fermi level. The results indicate that the Ni $3d$ band is not fully occupied and contradicts the charge-transfer model for rare-earth based alloys. The obtained electronic parameters indicate that GdNi is a strongly correlated charge transfer metal with the Ni on-site Coulomb energy being much larger than the effective charge-transfer energy between the Ni $3d$ and Gd $4f$ states.

rate research

Read More

120 - T. Burnus , Z. Hu , H. H. Hsieh 2008
We have studied the local electronic structure of LaMn0.5Co0.5O3 using soft-x-ray absorption spectroscopy at the Co-L_3,2 and Mn-L_3,2 edges. We found a high-spin Co^{2+}--Mn^{4+} valence state for samples with the optimal Curie temperature. We discovered that samples with lower Curie temperatures contain low-spin nonmagnetic Co^{3+} ions. Using soft-x-ray magnetic circular dichroism we established that the Co^{2+} and Mn^{4+} ions are ferromagnetically aligned. We revealed also that the Co^{2+} ions have a large orbital moment: m_orb/m_spin ~ 0.47. Together with model calculations, this suggests the presence of a large magnetocrystalline anisotropy in the material and predicts a non-trivial temperature dependence for the magnetic susceptibility.
We report a combined study for the electronic structures of ferromagnetic CeAgSb$_2$ using soft X-ray absorption (XAS), magnetic circular dichroism (XMCD), and angle-resolved photoemission (ARPES) spectroscopies. The Ce $M_{4, 5}$ XAS spectra show very small satellite structures, reflecting a strongly localized character of the Ce $4f$ electrons. The linear dichroism effects in the Ce $M_{4, 5}$ XAS spectra demonstrate the ground state Ce $4f$ symmetry of $Gamma{_6}$, the spatial distribution of which is directed along the $c$-axis. The XMCD results give support to the picture of local-moment magnetism in CeAgSb$_2$. Moreover it is also found that the theoretical band dispersions for LaAgSb$_2$ provides better description of the ARPES band structures than those for CeAgSb$_2$. Nevertheless, ARPES spectra at the Ce $3d$-$4f$ resonance show the momentum dependence for the intensity ratio between Ce $4f^{1}_{5/2}$ and $4f^{1}_{7/2}$ peaks in a part of the Brillouin zone, suggesting the non-negligible momentum dependent hybridization effect between the Ce $4f$ and the conduction electrons. This is associated with the moderate mass enhancement in CeAgSb$_2$.
We study the spin-dependent electronic structure of UTe and UT_{2}Si_{2} (T=Cu and Mn) compounds with a combination of x-ray magnetic circular dichroism measurements and first principle calculations. By exploiting the presence of sizable quadrupolar and dipolar contributions to the U L_{2,3}-edge x-ray absorption cross section we are able to provide unique information on the extent of hybridization between 5f and 6d/3d electronic states, a key parameter regulating the physical properties of all actinide materials. Since this information is hardly accessible to other probes, the new methodology opens up new venues for investigating this important class of materials.
We have studied the electronic structure of Li$_{1+x}$[Mn$_{0.5}$Ni$_{0.5}$]$_{1-x}$O$_2$ ($x$ = 0.00 and 0.05), one of the promising cathode materials for Li ion battery, by means of x-ray photoemission and absorption spectroscopy. The results show that the valences of Mn and Ni are basically 4+ and 2+, respectively. However, the Mn$^{3+}$ component in the $x$ = 0.00 sample gradually increases with the bulk sensitivity of the experiment, indicating that the Jahn-Teller active Mn$^{3+}$ ions are introduced in the bulk due to the site exchange between Li and Ni. The Mn$^{3+}$ component gets negligibly small in the $x$ = 0.05 sample, which indicates that the excess Li suppresses the site exchange and removes the Jahn-Teller active Mn$^{3+}$.
Bulk-sensitive hard x-ray photoemission spectroscopy (HAXPES) reveals for as-grown epitaxial films of half-metallic ferromagnetic CrO2(100) a pronounced screening feature in the Cr 2p3/2 core level and an asymmetry in the O 1s core level. This gives evidence of a finite, metal-type Fermi edge, which is surprisingly not observed in HAXPES. A spectral weight shift in HAXPES away from the Fermi energy is attributed to single-ion recoil effects due to high energy photoelectrons. In conjunction with inverse PES the intrinsic correlated Mott-Hubbard-type electronic structure is unravelled, yielding an averaged Coulomb correlation energy Uav ~ 3.2 eV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا