Do you want to publish a course? Click here

Probing 5f electronic hybridization in Uranium compounds via x-ray magnetic circular dichroism

266   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the spin-dependent electronic structure of UTe and UT_{2}Si_{2} (T=Cu and Mn) compounds with a combination of x-ray magnetic circular dichroism measurements and first principle calculations. By exploiting the presence of sizable quadrupolar and dipolar contributions to the U L_{2,3}-edge x-ray absorption cross section we are able to provide unique information on the extent of hybridization between 5f and 6d/3d electronic states, a key parameter regulating the physical properties of all actinide materials. Since this information is hardly accessible to other probes, the new methodology opens up new venues for investigating this important class of materials.



rate research

Read More

GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at T = 25 K in the ferrimagnetic phase. We analyze the Gd M$_{4,5}$-edge ($3d$ - $4f$) and Ni L$_{2,3}$-edge ($2p$ - $3d$) spectra using atomic multiplet and cluster model calculations, respectively. The atomic multiplet calculation for Gd M$_{4,5}$-edge XAS indicates that Gd is trivalent in GdNi, consistent with localized $4f$ states. On the other hand, a model cluster calculation for Ni L$_{2,3}$-edge XAS shows that Ni is effectively divalent in GdNi and strongly hybridized with nearest neighbour Gd states, resulting in a $d$-electron count of 8.57. The Gd M$_{4,5}$-edge XMCD spectrum is consistent with a ground state configuration of S = 7/2 and L=0. The Ni L$_{2,3}$-edge XMCD results indicate that the antiferromagnetically aligned Ni moments exhibit a small but finite magnetic moment ( $m_{tot}$ $sim$ 0.12 $mu_B$ ) with the ratio $m_{o}/m_{s}$ $sim$ 0.11. Valence band hard x-ray photoemission spectroscopy shows Ni $3d$ features at the Fermi level, confirming a partially filled $3d$ band, while the Gd $4f$ states are at high binding energies away from the Fermi level. The results indicate that the Ni $3d$ band is not fully occupied and contradicts the charge-transfer model for rare-earth based alloys. The obtained electronic parameters indicate that GdNi is a strongly correlated charge transfer metal with the Ni on-site Coulomb energy being much larger than the effective charge-transfer energy between the Ni $3d$ and Gd $4f$ states.
X-ray magnetic circular dichroism (XMCD) at the Eu L-edge (2p->5d) in two compounds exhibiting valence fluctuation, namely EuNi2(Si0.18Ge0.82)2 and EuNi2P2, has been investigated at pulsed high magnetic fields of up to 40 T. A distinct XMCD peak corresponding to the trivalent state (Eu3+; f6), whose ground state is nonmagnetic (J=0), was observed in addition to the main XMCD peak corresponding to the magnetic (J=7/2) divalent state (Eu2+; f7). This result indicates that the 5d electrons belonging to both valence states are magnetically polarized. It was also found that the ratio P5d(3+)/P5d(2+) between the polarization of 5d electrons (P5d) in the Eu3+ state and that of Eu2+ is ~ 0.1 in EuNi2(Si0.18Ge0.82)2 and ~ 0.3 in EuNi2P2 at magnetic fields where their macroscopic magnetization values are the same. The possible origin of the XMCD of the Eu3+ state and an explanation of the dependence of P5d(3+)/P5d(2+) on the material are discussed in terms of hybridization between the conduction electrons and the f electrons.
142 - F. Wilhelm , R. Eloirdi , J. Rusz 2013
The actinide cubic Laves compounds NpAl2, NpOs2, NpFe2, and PuFe2 have been examined by X-ray magnetic circular dichroism (XMCD) at the actinide M4,5 absorption edges and Os L2,3 absorption edges. The XMCD experiments performed at the M4,5 absorption edges of Np and Pu allow us to determine the spectroscopic branching ratio, which gives information on the coupling scheme in these materials. In all materials the intermediate coupling scheme is found appropriate. Comparison with the SQUID data for NpOs2 and PuFe2 allows a determination of the individual orbital and spin magnetic moments and the magnetic dipole contribution mmd. The resulting orbital and spin magnetic moments are in good agreement with earlier values determined by neutron diffraction, and the values of mmd are non-negligible, and close to those predicted for intermediate coupling. There is a comparatively large induced moment on the Os atom in NpOs2 such that the Os contribution to the total moment per formula unit is ~30% of the total. The spin and orbital moments at the Os site are parallel, in contrast to the anti-parallel configuration of Os impurities in 3d ferromagnetic transition metals. Calculations using the LDA+U technique are reported. The ab initio computed XMCD spectra show good agreement with experimental spectra for small values (0-1eV) of the Hubbard U parameter, which underpins that 5f electrons in these compounds are relatively delocalized.
We have studied the electronic and magnetic states of Co and Mn atoms at the interface of the Co$_mathrm{2}$Mn$_{beta}$Si (CMS)/MgO ($beta$=0.69, 0.99, 1.15 and 1.29) magnetic tunnel junction (MTJ) by means of x-ray magnetic circular dichroism. In particular, the Mn composition ($beta$) dependences of the Mn and Co magnetic moments were investigated. The experimental spin magnetic moments of Mn, $m_mathrm{spin}$(Mn), derived from XMCD weakly decreased with increasing Mn composition $beta$ in going from Mn-deficient to Mn-rich CMS films. This behavior was explained by first-principles calculations based on the antisite-based site-specific formula unit (SSFU) composition model, which assumes the formation of only antisite defect, not vacancies, to accommodate off-stoichiometry. Furthermore, the experimental spin magnetic moments of Co, $m_mathrm{spin}$(Co), also weakly decreased with increasing Mn composition. This behavior was consistently explained by the antisite-based SSFU model, in particular, by the decrease in the concentration of Co$_mathrm{Mn}$ antisites detrimental to the half-metallicity of CMS with increasing $beta$. This finding is consistent with the higher TMR ratios which have been observed for CMS/MgO/CMS MTJs with Mn-rich CMS electrodes.
X-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra at the L$_{2,3}$ edges of Mn in (Ge,Mn) compounds have been measured and are compared to the results of first principles calculation. Early textit{ab initio} studies show that the Density Functional Theory (DFT) can very well describe the valence band electronic properties but fails to reproduce a characteristic change of sign in the L$_{3}$ XMCD spectrum of Mn in Ge$_3$Mn$_5$, which is observed in experiments. In this work we demonstrate that this disagreement is partially related to an underestimation of the exchange splitting of Mn 2$p$ core states within the local density approximation. It is shown that the change in sign experimentally observed is reproduced if the exchange splitting is accurately calculated within the Hartree-Fock approximation, while the final states can be still described by the DFT. This approach is further used to calculate the XMCD in different (Ge,Mn) compounds. It demonstrates that the agreement between experimental and theoretical spectra can be improved by combining state of the art calculations for the core and valence states respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا