Do you want to publish a course? Click here

Electronic structure of Li$_{1+x}$[Mn$_{0.5}$Ni$_{0.5}$]$_{1-x}$O$_2$ studied by photoemission and x-ray absorption spectroscopy

183   0   0.0 ( 0 )
 Added by Yuichi Yokoyama
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the electronic structure of Li$_{1+x}$[Mn$_{0.5}$Ni$_{0.5}$]$_{1-x}$O$_2$ ($x$ = 0.00 and 0.05), one of the promising cathode materials for Li ion battery, by means of x-ray photoemission and absorption spectroscopy. The results show that the valences of Mn and Ni are basically 4+ and 2+, respectively. However, the Mn$^{3+}$ component in the $x$ = 0.00 sample gradually increases with the bulk sensitivity of the experiment, indicating that the Jahn-Teller active Mn$^{3+}$ ions are introduced in the bulk due to the site exchange between Li and Ni. The Mn$^{3+}$ component gets negligibly small in the $x$ = 0.05 sample, which indicates that the excess Li suppresses the site exchange and removes the Jahn-Teller active Mn$^{3+}$.



rate research

Read More

The electronic structure of the magnetic semiconductor Ga$_{1-x}$Cr$_{x}$N and the effect of Si doping on it have been investigated by photoemission and soft x-ray absorption spectroscopy. We have confirmed that Cr in GaN is predominantly trivalent substituting for Ga, and that Cr 3$d$ states appear within the band gap of GaN just above the N 2$p$-derived valence-band maximum. As a result of Si doping, downward shifts of the core levels (except for Cr 2$p$) and the formation of new states near the Fermi level were observed, which we attribute to the upward chemical potential shift and the formation of a small amount of Cr$^{2+}$ species caused by the electron doping. Possibility of Cr-rich cluster growth by Si doping are discussed based on the spectroscopic and magnetization data.
We have investigated the electronic structure of the $p$-type diluted magnetic semiconductor In$_{1-x}$Mn$_x$As by photoemission spectroscopy. The Mn 3$d$ partial density of states is found to be basically similar to that of Ga$_{1-x}$Mn$_x$As. However, the impurity-band like states near the top of the valence band have not been observed by angle-resolved photoemission spectroscopy unlike Ga$_{1-x}$Mn$_x$As. This difference would explain the difference in transport, magnetic and optical properties of In$_{1-x}$Mn$_x$As and Ga$_{1-x}$Mn$_x$As. The different electronic structures are attributed to the weaker Mn 3$d$ - As 4$p$ hybridization in In$_{1-x}$Mn$_x$As than in Ga$_{1-x}$Mn$_x$As.
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at T = 25 K in the ferrimagnetic phase. We analyze the Gd M$_{4,5}$-edge ($3d$ - $4f$) and Ni L$_{2,3}$-edge ($2p$ - $3d$) spectra using atomic multiplet and cluster model calculations, respectively. The atomic multiplet calculation for Gd M$_{4,5}$-edge XAS indicates that Gd is trivalent in GdNi, consistent with localized $4f$ states. On the other hand, a model cluster calculation for Ni L$_{2,3}$-edge XAS shows that Ni is effectively divalent in GdNi and strongly hybridized with nearest neighbour Gd states, resulting in a $d$-electron count of 8.57. The Gd M$_{4,5}$-edge XMCD spectrum is consistent with a ground state configuration of S = 7/2 and L=0. The Ni L$_{2,3}$-edge XMCD results indicate that the antiferromagnetically aligned Ni moments exhibit a small but finite magnetic moment ( $m_{tot}$ $sim$ 0.12 $mu_B$ ) with the ratio $m_{o}/m_{s}$ $sim$ 0.11. Valence band hard x-ray photoemission spectroscopy shows Ni $3d$ features at the Fermi level, confirming a partially filled $3d$ band, while the Gd $4f$ states are at high binding energies away from the Fermi level. The results indicate that the Ni $3d$ band is not fully occupied and contradicts the charge-transfer model for rare-earth based alloys. The obtained electronic parameters indicate that GdNi is a strongly correlated charge transfer metal with the Ni on-site Coulomb energy being much larger than the effective charge-transfer energy between the Ni $3d$ and Gd $4f$ states.
We have performed x-ray photoemission spectroscopy on the system of noncentrosymmetric superconductor, Li$_2$(Pd$_x$Pt$_{1-x}$3)B. For Li$_2$Pt$_3$B, we found 2 major peaks with 2 other weak components, and the band calculations were in agreement with the observation. The assignment of valence band features using the calculated partial density of states determined that Pt 5d and B 2p contribute to the density of states at the Fermi level. The effect of antisymmetric spin-orbit coupling on the band structure might have been probed, and the analysis on the effect of Pt incorporation into the system indicates the smooth evolution of electronic structures. We presented the measurements of core levels (Pd 3d, Pt 4f, and B 1s) and discussed the chemical bonding states and electronic structures from them.
127 - S. C. Wi , J.-S. Kang , J. H. Kim 2003
Electronic structures of Zn$_{1-x}$Co$_x$O have been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Co 3d states are found to lie near the top of the O $2p$ valence band, with a peak around $sim 3$ eV binding energy. The Co $2p$ XAS spectrum provides evidence that the Co ions in Zn$_{1-x}$Co$_{x}$O are in the divalent Co$^{2+}$ ($d^7$) states under the tetrahedral symmetry. Our finding indicates that the properly substituted Co ions for Zn sites will not produce the diluted ferromagnetic semiconductor property.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا