Do you want to publish a course? Click here

All-order differential equations for one-loop closed-string integrals and modular graph forms

72   0   0.0 ( 0 )
 Added by Jan E. Gerken
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We investigate generating functions for the integrals over world-sheet tori appearing in closed-string one-loop amplitudes of bosonic, heterotic and type-II theories. These closed-string integrals are shown to obey homogeneous and linear differential equations in the modular parameter of the torus. We spell out the first-order Cauchy-Riemann and second-order Laplace equations for the generating functions for any number of external states. The low-energy expansion of such torus integrals introduces infinite families of non-holomorphic modular forms known as modular graph forms. Our results generate homogeneous first- and second-order differential equations for arbitrary such modular graph forms and can be viewed as a step towards all-order low-energy expansions of closed-string integrals.



rate research

Read More

We present a new method to evaluate the $alpha$-expansion of genus-one integrals over open-string punctures and unravel the structure of the elliptic multiple zeta values in its coefficients. This is done by obtaining a simple differential equation of Knizhnik-Zamolodchikov-Bernard-type satisfied by generating functions of such integrals, and solving it via Picard iteration. The initial condition involves the generating functions at the cusp $tauto iinfty$ and can be reduced to genus-zero integrals.
We investigate one-loop four-point scattering of non-abelian gauge bosons in heterotic string theory and identify new connections with the corresponding open-string amplitude. In the low-energy expansion of the heterotic-string amplitude, the integrals over torus punctures are systematically evaluated in terms of modular graph forms, certain non-holomorphic modular forms. For a specific torus integral, the modular graph forms in the low-energy expansion are related to the elliptic multiple zeta values from the analogous open-string integrations over cylinder boundaries. The detailed correspondence between these modular graph forms and elliptic multiple zeta values supports a recent proposal for an elliptic generalization of the single-valued map at genus zero.
We study generating functions of moduli-space integrals at genus one that are expected to form a basis for massless $n$-point one-loop amplitudes of open superstrings and open bosonic strings. These integrals are shown to satisfy the same type of linear and homogeneous first-order differential equation w.r.t. the modular parameter $tau$ which is known from the A-elliptic Knizhnik--Zamolodchikov--Bernard associator. The expressions for their $tau$-derivatives take a universal form for the integration cycles in planar and non-planar one-loop open-string amplitudes. These differential equations manifest the uniformly transcendental appearance of iterated integrals over holomorphic Eisenstein series in the low-energy expansion w.r.t. the inverse string tension $alpha$. In fact, we are led to matrix representations of certain derivations dual to Eisenstein series. Like this, also the $alpha$-expansion of non-planar integrals is manifestly expressible in terms of iterated Eisenstein integrals without referring to twisted elliptic multiple zeta values. The degeneration of the moduli-space integrals at $tau rightarrow iinfty$ is expressed in terms of their genus-zero analogues -- $(n{+}2)$-point Parke--Taylor integrals over disk boundaries. Our results yield a compact formula for $alpha$-expansions of $n$-point integrals over boundaries of cylinder- or Moebius-strip worldsheets, where any desired order is accessible from elementary operations.
We study generating series of torus integrals that contain all so-called modular graph forms relevant for massless one-loop closed-string amplitudes. By analysing the differential equation of the generating series we construct a solution for its low-energy expansion to all orders in the inverse string tension $alpha$. Our solution is expressed through initial data involving multiple zeta values and certain real-analytic functions of the modular parameter of the torus. These functions are built from real and imaginary parts of holomorphic iterated Eisenstein integrals and should be closely related to Browns recent construction of real-analytic modular forms. We study the properties of our real-analytic objects in detail and give explicit examples to a fixed order in the $alpha$-expansion. In particular, our solution allows for a counting of linearly independent modular graph forms at a given weight, confirming previous partial results and giving predictions for higher, hitherto unexplored weights. It also sheds new light on the topic of uniform transcendentality of the $alpha$-expansion.
93 - Jan E. Gerken 2020
In this thesis, we investigate the low-energy expansion of scattering amplitudes of closed strings at one-loop level (i.e. at genus one) in a ten-dimensional Minkowski background using a special class of functions called modular graph forms. These allow for a systematic evaluation of the low-energy expansion and satisfy many non-trivial algebraic and differential relations. We study these relations in detail, leading to basis decompositions for a large number of modular graph forms which greatly reduce the complexity of the expansions of the integrals appearing in the amplitude. One of the results of this thesis is a Mathematica package which automatizes these simplifications. We use these techniques to compute the leading low-energy orders of the scattering amplitude of four gluons in the heterotic string at one-loop level. Furthermore, we study a generating function which conjecturally contains the torus integrals of all perturbative closed-string theories. We write this generating function in terms of iterated integrals of holomorphic Eisenstein series and use this approach to arrive at a more rigorous characterization of the space of modular graph forms than was possible before. For tree-level string amplitudes, the single-valued map of multiple zeta values maps open-string amplitudes to closed-string amplitudes. The definition of a suitable one-loop generalization, a so-called elliptic single-valued map, is an active area of research and we provide a new perspective on this topic using our generating function of torus integrals. The original version of this thesis, as submitted in June 2020 to the Humboldt University Berlin, is available under the DOI 10.18452/21829. The present text contains minor updates compared to this version, reflecting further developments in the literature, in particular concerning the construction of an elliptic single-valued map.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا