Do you want to publish a course? Click here

Heterotic-string amplitudes at one loop: modular graph forms and relations to open strings

121   0   0.0 ( 0 )
 Added by Jan E. Gerken
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We investigate one-loop four-point scattering of non-abelian gauge bosons in heterotic string theory and identify new connections with the corresponding open-string amplitude. In the low-energy expansion of the heterotic-string amplitude, the integrals over torus punctures are systematically evaluated in terms of modular graph forms, certain non-holomorphic modular forms. For a specific torus integral, the modular graph forms in the low-energy expansion are related to the elliptic multiple zeta values from the analogous open-string integrations over cylinder boundaries. The detailed correspondence between these modular graph forms and elliptic multiple zeta values supports a recent proposal for an elliptic generalization of the single-valued map at genus zero.



rate research

Read More

93 - Jan E. Gerken 2020
In this thesis, we investigate the low-energy expansion of scattering amplitudes of closed strings at one-loop level (i.e. at genus one) in a ten-dimensional Minkowski background using a special class of functions called modular graph forms. These allow for a systematic evaluation of the low-energy expansion and satisfy many non-trivial algebraic and differential relations. We study these relations in detail, leading to basis decompositions for a large number of modular graph forms which greatly reduce the complexity of the expansions of the integrals appearing in the amplitude. One of the results of this thesis is a Mathematica package which automatizes these simplifications. We use these techniques to compute the leading low-energy orders of the scattering amplitude of four gluons in the heterotic string at one-loop level. Furthermore, we study a generating function which conjecturally contains the torus integrals of all perturbative closed-string theories. We write this generating function in terms of iterated integrals of holomorphic Eisenstein series and use this approach to arrive at a more rigorous characterization of the space of modular graph forms than was possible before. For tree-level string amplitudes, the single-valued map of multiple zeta values maps open-string amplitudes to closed-string amplitudes. The definition of a suitable one-loop generalization, a so-called elliptic single-valued map, is an active area of research and we provide a new perspective on this topic using our generating function of torus integrals. The original version of this thesis, as submitted in June 2020 to the Humboldt University Berlin, is available under the DOI 10.18452/21829. The present text contains minor updates compared to this version, reflecting further developments in the literature, in particular concerning the construction of an elliptic single-valued map.
We investigate generating functions for the integrals over world-sheet tori appearing in closed-string one-loop amplitudes of bosonic, heterotic and type-II theories. These closed-string integrals are shown to obey homogeneous and linear differential equations in the modular parameter of the torus. We spell out the first-order Cauchy-Riemann and second-order Laplace equations for the generating functions for any number of external states. The low-energy expansion of such torus integrals introduces infinite families of non-holomorphic modular forms known as modular graph forms. Our results generate homogeneous first- and second-order differential equations for arbitrary such modular graph forms and can be viewed as a step towards all-order low-energy expansions of closed-string integrals.
In this Letter, we provide evidence for a new double-copy structure in one-loop amplitudes of the open superstring. Their integrands with respect to the moduli space of genus-one surfaces are cast into a form where gauge-invariant kinematic factors and certain functions of the punctures -- so-called generalized elliptic integrands -- enter on completely symmetric footing. In particular, replacing the generalized elliptic integrands by a second copy of kinematic factors maps one-loop open-string correlators to gravitational matrix elements of the higher-curvature operator R^4.
This paper investigates the relations between modular graph forms, which are generalizations of the modular graph functions that were introduced in earlier papers motivated by the structure of the low energy expansion of genus-one Type II superstring amplitudes. These modular graph forms are multiple sums associated with decorated Feynman graphs on the world-sheet torus. The action of standard differential operators on these modular graph forms admits an algebraic representation on the decorations. First order differential operators are used to map general non-holomorphic modular graph functions to holomorphic modular forms. This map is used to provide proofs of the identities between modular graph functions for weight less than six conjectured in earlier work, by mapping these identities to relations between holomorphic modular forms which are proven by holomorphic methods. The map is further used to exhibit the structure of identities at arbitrary weight.
We present a new method to evaluate the $alpha$-expansion of genus-one integrals over open-string punctures and unravel the structure of the elliptic multiple zeta values in its coefficients. This is done by obtaining a simple differential equation of Knizhnik-Zamolodchikov-Bernard-type satisfied by generating functions of such integrals, and solving it via Picard iteration. The initial condition involves the generating functions at the cusp $tauto iinfty$ and can be reduced to genus-zero integrals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا