Do you want to publish a course? Click here

Generating series of all modular graph forms from iterated Eisenstein integrals

425   0   0.0 ( 0 )
 Added by Axel Kleinschmidt
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study generating series of torus integrals that contain all so-called modular graph forms relevant for massless one-loop closed-string amplitudes. By analysing the differential equation of the generating series we construct a solution for its low-energy expansion to all orders in the inverse string tension $alpha$. Our solution is expressed through initial data involving multiple zeta values and certain real-analytic functions of the modular parameter of the torus. These functions are built from real and imaginary parts of holomorphic iterated Eisenstein integrals and should be closely related to Browns recent construction of real-analytic modular forms. We study the properties of our real-analytic objects in detail and give explicit examples to a fixed order in the $alpha$-expansion. In particular, our solution allows for a counting of linearly independent modular graph forms at a given weight, confirming previous partial results and giving predictions for higher, hitherto unexplored weights. It also sheds new light on the topic of uniform transcendentality of the $alpha$-expansion.



rate research

Read More

We continue the analysis of modular invariant functions, subject to inhomogeneous Laplace eigenvalue equations, that were determined in terms of Poincare series in a companion paper. The source term of the Laplace equation is a product of (derivatives of) two non-holomorphic Eisenstein series whence the modular invariants are assigned depth two. These modular invariant functions can sometimes be expressed in terms of single-valued iterated integrals of holomorphic Eisenstein series as they appear in generating series of modular graph forms. We show that the set of iterated integrals of Eisenstein series has to be extended to include also iterated integrals of holomorphic cusp forms to find expressions for all modular invariant functions of depth two. The coefficients of these cusp forms are identified as ratios of their L-values inside and outside the critical strip.
We consider special Lambert series as generating functions of divisor sums and determine their complete transseries expansion near rational roots of unity. Our methods also yield new insights into the Laurent expansions and modularity properties of iterated Eisenstein integrals that have recently attracted attention in the context of certain period integrals and string theory scattering amplitudes.
Elliptic modular graph functions and forms (eMGFs) are defined for arbitrary graphs as natural generalizations of modular graph functions and forms obtained by including the character of an Abelian group in their Kronecker--Eisenstein series. The simplest examples of eMGFs are given by the Green function for a massless scalar field on the torus and the Zagier single-valued elliptic polylogarithms. More complicated eMGFs are produced by the non-separating degeneration of a higher genus surface to a genus one surface with punctures. eMGFs may equivalently be represented by multiple integrals over the torus of combinations of coefficients of the Kronecker--Eisenstein series, and may be assembled into generating series. These relations are exploited to derive holomorphic subgraph reduction formulas, as well as algebraic and differential identities between eMGFs and their generating series.
We investigate generating functions for the integrals over world-sheet tori appearing in closed-string one-loop amplitudes of bosonic, heterotic and type-II theories. These closed-string integrals are shown to obey homogeneous and linear differential equations in the modular parameter of the torus. We spell out the first-order Cauchy-Riemann and second-order Laplace equations for the generating functions for any number of external states. The low-energy expansion of such torus integrals introduces infinite families of non-holomorphic modular forms known as modular graph forms. Our results generate homogeneous first- and second-order differential equations for arbitrary such modular graph forms and can be viewed as a step towards all-order low-energy expansions of closed-string integrals.
In recent work, M. Just and the second author defined a class of semi-modular forms on $mathbb C$, in analogy with classical modular forms, that are half modular in a particular sense; and constructed families of such functions as Eisenstein-like series using symmetries related to integer partitions. Looking for further natural examples of semi-modular behavior, here we construct a family of Eisenstein-like series to produce semi-modular forms, using symmetries related to Fibonacci numbers instead of partitions. We then consider other Lucas sequences that yield semi-modular forms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا