Do you want to publish a course? Click here

Tracing the Formation of Molecular Clouds in a Low-Metallicity Galaxy: A HI Narrow Self-Absorption Survey of the Large Magellanic Cloud

335   0   0.0 ( 0 )
 Added by Boyang Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cold atomic hydrogen clouds are the precursors of molecular clouds. Due to self-absorption, the opacity of cold atomic hydrogen may be high, and this gas may constitute an important mass component of the interstellar medium (ISM). Atomic hydrogen gas can be cooled to temperatures much lower than found in the cold neutral medium (CNM) through collisions with molecular hydrogen. In this paper, we search for HI Narrow Self-Absorption (HINSA) features in the Large Magellanic Cloud (LMC) as an indicator of such cold HI clouds, and use the results to quantify atomic masses and atomic-to-molecular gas ratio. Our search for HINSA features was conducted towards molecular clouds in the LMC using the ATCA+Parkes HI survey and the MAGMA CO survey. HINSA features are prevalent in the surveyed sightlines. This is the first detection of HINSA in an external galaxy. The HINSA-HI/$rm{H}_{2}$ ratio in the LMC varies from 0.5e{-3} to 3.4e{-3} (68% interval), with a mean value of $(1.31 pm 0.03)$e{-3}, after correcting for the effect of foreground HI gas. This is similar to the Milky Way value and indicates that similar fractions of cold gas exist in the LMC and the Milky Way, despite their differing metallicities, dust content and radiation fields. The low ratio also confirms that, as with the Milky Way, the formation timescale of molecular clouds is short. The ratio shows no radial gradient, unlike the case for stellar metallicity. No correlation is found between our results and those from previous HI absorption studies of the LMC.



rate research

Read More

The Magellanic Clouds provide the only laboratory to study the effect of metallicity and galaxy mass on molecular gas and star formation at high (~20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the Magellanic Clouds, avoiding the known biases of CO emission as a tracer of H$_{2}$. Using our dust-based molecular gas estimates, we find molecular gas depletion times of ~0.4 Gyr in the LMC and ~0.6 SMC at 1 kpc scales. These depletion times fall within the range found for normal disk galaxies, but are shorter than the average value, which could be due to recent bursts in star formation. We find no evidence for a strong intrinsic dependence of the molecular gas depletion time on metallicity. We study the relationship between gas and star formation rate across a range in size scales from 20 pc to ~1 kpc, including how the scatter in molecular gas depletion time changes with size scale, and discuss the physical mechanisms driving the relationships. We compare the metallicity-dependent star formation models of Ostriker, McKee, and Leroy (2010) and Krumholz (2013) to our observations and find that they both predict the trend in the data, suggesting that the inclusion of a diffuse neutral medium is important at lower metallicity.
We present the first results from the Small Magellanic Cloud portion of a new Australia Telescope Compact Array (ATCA) HI absorption survey of both of the Magellanic Clouds, comprising over 800 hours of observations. Our new HI absorption line data allow us to measure the temperature and fraction of cold neutral gas in a low metallicity environment. We observed 22 separate fields, targeting a total of 55 continuum sources against 37 of which we detected HI absorption; from this we measure a column density weighted mean average spin temperature of $<T_{s}>=150$ K. Splitting the spectra into individual absorption line features, we estimate the temperatures of different gas components and find an average cold gas temperature of $sim{30}$ K for this sample, lower than the average of $sim{40}$ K in the Milky Way. The HI appears to be evenly distributed throughout the SMC and we detect absorption in $67%$ of the lines of sight in our sample, including some outside the main body of the galaxy ($N_{text{HI}}>2times{10^{21}}$ cm$^{-2}$). The optical depth and temperature of the cold neutral atomic gas shows no strong trend with location spatially or in velocity. Despite the low metallicity environment, we find an average cold gas fraction of $sim{20%}$, not dissimilar from that of the Milky Way.
Spectral line survey observations of 7 molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamental species such as CS, SO, CCH, HCN, HCO+, and HNC are detected in addition to those of CO and 13CO, while CH3OH is not detected in any source and N2H+ is marginally detected in two sources. The molecular-cloud scale (10 pc scale) chemical composition is found to be similar among the 7 sources regardless of different star formation activities, and hence, it represents the chemical composition characteristic to the LMC without influences of star formation activities. In comparison with chemical compositions of Galactic sources, the characteristic features are (1) deficient N-bearing molecules, (2) abundant CCH, and (3) deficient CH3OH. The feature (1) is due to a lower elemental abundance of nitrogen in the LMC, whereas the features (2) and (3) seem to originate from extended photodissociation regions and warmer temperature in cloud peripheries due to a lower abundance of dust grains in the low metallicity condition. In spite of general resemblance of chemical abundances among the seven sources, the CS/HCO+ and SO/HCO+ ratios are found to be slightly higher in a quiescent molecular cloud. An origin of this trend is discussed in relation to possible depletion of sulfur along molecular cloud formation.
We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio HII regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation; Type I shows no signature of massive star formation, Type II is associated with relatively small HII region(s) and Type III with both HII region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I GMCs do not host optically hidden HII regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in a sense they are located within ~100 pc of the molecular clouds. Among possible ideas to explain the GMC Types, we favor that the Types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the time scale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the time scale of the youngest stellar clusters, 10 Myrs, we roughly estimate the timescales of Types I, II and III to be 6 Myrs, 13 Myrs and 7 Myrs, respectively, corresponding to a lifetime of 20-30 Myrs for the GMCs with a mass above the completeness limit, 5 x 10^4 Msun.
We present the results of 0.1-pc-scale observations in 250 GHz and 350GHz towards a newly-discovered hot molecular core in a nearby low-metallicity galaxy, the Large Magellanic Cloud (LMC), with the Atacama Large Millimeter/submillimeter Array. A variety of C/N/O/Si/S-bearing molecules are detected towards the high-mass young stellar object, ST16. A rotating protostellar envelope is for the first time detected outside our Galaxy by SO2 and 34SO lines. An outflow cavity is traced by CCH and CN. The isotope abundance of sulfur in the source is estimated to be 32S/34S = 17 and 32S/33S = 53 based on SO, SO2, and CS isotopologues, suggesting that both 34S and 33S are overabundant in the LMC. Rotation diagram analyses show that the source is associated with hot gas (>100K) traced by high-excitation lines of CH3OH and SO2, as well as warm gas (~50K) traced by CH3OH, SO2, 34SO, OCS, CH3CN lines. A comparison of molecular abundances between LMC and Galactic hot cores suggests that organic molecules (e.g., CH3OH, a classical hot core tracer) show a large abundance variation in low metallicity, where the present source is classified into an organic-poor hot core. Our astrochemical simulations suggest that different grain temperature during the initial ice-forming stage would contribute to the chemical differentiation. In contrast, SO2 shows similar abundances within all the known LMC hot cores and the typical abundance roughly scales with the LMCs metallicity. Nitrogen-bearing molecules are generally less abundant in LMC hot cores, except for NO. The present results suggest that chemical compositions of hot cores do not always simply scale with the metallicity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا