Do you want to publish a course? Click here

The Second Survey of the Molecular Clouds in the Large Magellanic Cloud by NANTEN. II. Star Formation

125   0   0.0 ( 0 )
 Added by Akiko Kawamura
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio HII regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation; Type I shows no signature of massive star formation, Type II is associated with relatively small HII region(s) and Type III with both HII region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I GMCs do not host optically hidden HII regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in a sense they are located within ~100 pc of the molecular clouds. Among possible ideas to explain the GMC Types, we favor that the Types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the time scale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the time scale of the youngest stellar clusters, 10 Myrs, we roughly estimate the timescales of Types I, II and III to be 6 Myrs, 13 Myrs and 7 Myrs, respectively, corresponding to a lifetime of 20-30 Myrs for the GMCs with a mass above the completeness limit, 5 x 10^4 Msun.



rate research

Read More

The second survey of the molecular clouds in 12CO (J = 1-0) was carried out in the Large Magellanic Cloud by NANTEN. The sensitivity of this survey is twice as high as that of the previous NANTEN survey, leading to a detection of molecular clouds with M_CO > 2 x 10^4 M_sun. We identified 272 molecular clouds, 230 of which are detected at three or more observed positions. We derived the physical properties, such as size, line width, virial mass, of the 164 GMCs which have an extent more than the beam size of NANTEN in both the major and minor axes. The CO luminosity and virial mass of the clouds show a good correlation of M_VIR propto L_CO^{1.1 +- 0.1} with a Spearman rank correlation of 0.8 suggesting that the clouds are in nearly virial equilibrium. Assuming the clouds are in virial equilibrium, we derived an X_CO-factor to be ~ 7 x 10^20 cm^-2 (K km s^-1)^-1. The mass spectrum of the clouds is fitted well by a power law of N_cloud(>M_CO) proportional to M_CO^{-0.75 +- 0.06} above the completeness limit of 5 x 10^4 M_sun. The slope of the mass spectrum becomes steeper if we fit only the massive clouds; e.g., N_cloud (>M_CO) is proportional to M_CO^{-1.2 +- 0.2} for M_CO > 3 x 10^5 M_sun.
Spectral line survey observations of 7 molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamental species such as CS, SO, CCH, HCN, HCO+, and HNC are detected in addition to those of CO and 13CO, while CH3OH is not detected in any source and N2H+ is marginally detected in two sources. The molecular-cloud scale (10 pc scale) chemical composition is found to be similar among the 7 sources regardless of different star formation activities, and hence, it represents the chemical composition characteristic to the LMC without influences of star formation activities. In comparison with chemical compositions of Galactic sources, the characteristic features are (1) deficient N-bearing molecules, (2) abundant CCH, and (3) deficient CH3OH. The feature (1) is due to a lower elemental abundance of nitrogen in the LMC, whereas the features (2) and (3) seem to originate from extended photodissociation regions and warmer temperature in cloud peripheries due to a lower abundance of dust grains in the low metallicity condition. In spite of general resemblance of chemical abundances among the seven sources, the CS/HCO+ and SO/HCO+ ratios are found to be slightly higher in a quiescent molecular cloud. An origin of this trend is discussed in relation to possible depletion of sulfur along molecular cloud formation.
78 - D. Paradis , C. Meny , M. Juvela 2019
In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1$^{prime}$ angular resolution (four times greater than a previous analysis) and with a larger spectral coverage range thanks to Herschel data. We also ensure the robustness of our results in the framework of various dust models. We performed a decomposition of the dust emission in the infrared (3.6 $mic$ to 500 $mic$) associated with the atomic, molecular, and ionized gas phases in the molecular clouds of the LMC. The resulting spectral energy distributions were fitted with four distinct dust models. We then analyzed the model parameters such as the intensity of the radiation field and the relative dust abundances, as well as the slope of the emission spectra at long wavelengths. This work allows dust models to be compared with infrared data in various environments for the first time, which reveals important differences between the models at short wavelengths in terms of data fitting (mainly in the PAH bands). In addition, this analysis points out distinct results according to the gas phases, such as dust composition directly affecting the dust temperature and the dust emissivity in the submm, and different dust emission in the near-infrared (NIR). We observe direct evidence of dust property evolution from the diffuse to the dense medium in a large sample of molecular clouds in the LMC. In addition, the differences in the dust component abundances between the gas phases could indicate different origins of grain formation. We also point out the presence of a NIR-continuum in all gas phases, with an enhancement in the ionized gas. We favor the hypothesis of an additional dust component as the carrier of this continuum.
We present a cluster analysis of the bright main-sequence and faint pre--main-sequence stellar populations of a field ~ 90 x 90 pc centered on the HII region NGC 346/N66 in the Small Magellanic Cloud, from imaging with HST/ACS. We extend our earlier analysis on the stellar cluster population in the region to characterize the structuring behavior of young stars in the region as a whole with the use of stellar density maps interpreted through techniques designed for the study of the ISM structuring. In particular, we demonstrate with Cartwrigth & Whitworths Q parameter, dendrograms, and the Delta-variance wavelet transform technique that the young stellar populations in the region NGC 346/N66 are hierarchically clustered, in agreement with other regions in the Magellanic Clouds observed with HST. The origin of this hierarchy is currently under investigation.
Cold atomic hydrogen clouds are the precursors of molecular clouds. Due to self-absorption, the opacity of cold atomic hydrogen may be high, and this gas may constitute an important mass component of the interstellar medium (ISM). Atomic hydrogen gas can be cooled to temperatures much lower than found in the cold neutral medium (CNM) through collisions with molecular hydrogen. In this paper, we search for HI Narrow Self-Absorption (HINSA) features in the Large Magellanic Cloud (LMC) as an indicator of such cold HI clouds, and use the results to quantify atomic masses and atomic-to-molecular gas ratio. Our search for HINSA features was conducted towards molecular clouds in the LMC using the ATCA+Parkes HI survey and the MAGMA CO survey. HINSA features are prevalent in the surveyed sightlines. This is the first detection of HINSA in an external galaxy. The HINSA-HI/$rm{H}_{2}$ ratio in the LMC varies from 0.5e{-3} to 3.4e{-3} (68% interval), with a mean value of $(1.31 pm 0.03)$e{-3}, after correcting for the effect of foreground HI gas. This is similar to the Milky Way value and indicates that similar fractions of cold gas exist in the LMC and the Milky Way, despite their differing metallicities, dust content and radiation fields. The low ratio also confirms that, as with the Milky Way, the formation timescale of molecular clouds is short. The ratio shows no radial gradient, unlike the case for stellar metallicity. No correlation is found between our results and those from previous HI absorption studies of the LMC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا