Do you want to publish a course? Click here

The Relationship Between Molecular Gas, HI, and Star Formation in the Low-Mass, Low-Metallicity Magellanic Clouds

98   0   0.0 ( 0 )
 Added by Katherine Jameson
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Magellanic Clouds provide the only laboratory to study the effect of metallicity and galaxy mass on molecular gas and star formation at high (~20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the Magellanic Clouds, avoiding the known biases of CO emission as a tracer of H$_{2}$. Using our dust-based molecular gas estimates, we find molecular gas depletion times of ~0.4 Gyr in the LMC and ~0.6 SMC at 1 kpc scales. These depletion times fall within the range found for normal disk galaxies, but are shorter than the average value, which could be due to recent bursts in star formation. We find no evidence for a strong intrinsic dependence of the molecular gas depletion time on metallicity. We study the relationship between gas and star formation rate across a range in size scales from 20 pc to ~1 kpc, including how the scatter in molecular gas depletion time changes with size scale, and discuss the physical mechanisms driving the relationships. We compare the metallicity-dependent star formation models of Ostriker, McKee, and Leroy (2010) and Krumholz (2013) to our observations and find that they both predict the trend in the data, suggesting that the inclusion of a diffuse neutral medium is important at lower metallicity.



rate research

Read More

Cold atomic hydrogen clouds are the precursors of molecular clouds. Due to self-absorption, the opacity of cold atomic hydrogen may be high, and this gas may constitute an important mass component of the interstellar medium (ISM). Atomic hydrogen gas can be cooled to temperatures much lower than found in the cold neutral medium (CNM) through collisions with molecular hydrogen. In this paper, we search for HI Narrow Self-Absorption (HINSA) features in the Large Magellanic Cloud (LMC) as an indicator of such cold HI clouds, and use the results to quantify atomic masses and atomic-to-molecular gas ratio. Our search for HINSA features was conducted towards molecular clouds in the LMC using the ATCA+Parkes HI survey and the MAGMA CO survey. HINSA features are prevalent in the surveyed sightlines. This is the first detection of HINSA in an external galaxy. The HINSA-HI/$rm{H}_{2}$ ratio in the LMC varies from 0.5e{-3} to 3.4e{-3} (68% interval), with a mean value of $(1.31 pm 0.03)$e{-3}, after correcting for the effect of foreground HI gas. This is similar to the Milky Way value and indicates that similar fractions of cold gas exist in the LMC and the Milky Way, despite their differing metallicities, dust content and radiation fields. The low ratio also confirms that, as with the Milky Way, the formation timescale of molecular clouds is short. The ratio shows no radial gradient, unlike the case for stellar metallicity. No correlation is found between our results and those from previous HI absorption studies of the LMC.
We compare atomic gas, molecular gas, and the recent star formation rate (SFR) inferred from H-alpha in the Small Magellanic Cloud (SMC). By using infrared dust emission and local dust-to-gas ratios, we construct a map of molecular gas that is independent of CO emission. This allows us to disentangle conversion factor effects from the impact of metallicity on the formation and star formation efficiency of molecular gas. On scales of 200 pc to 1 kpc we find a characteristic molecular gas depletion time of ~1.6 Gyr, similar to that observed in the molecule-rich parts of large spiral galaxies on similar spatial scales. This depletion time shortens on much larger scales to ~0.6 Gyr because of the presence of a diffuse H-alpha component, and lengthens on much smaller scales to ~7.5 Gyr because the H-alpha and H2 distributions differ in detail. We estimate the systematic uncertainties in our measurement to be a factor of 2-3. We suggest that the impact of metallicity on the physics of star formation in molecular gas has at most this magnitude. The relation between SFR and neutral (H2+HI) gas surface density is steep, with a power-law index ~2.2+/-0.1, similar to that observed in the outer disks of large spiral galaxies. At a fixed total gas surface density the SMC has a 5-10 times lower molecular gas fraction (and star formation rate) than large spiral galaxies. We explore the ability of the recent models by Krumholz et al. (2009) and Ostriker et al. (2010) to reproduce our observations. We find that to explain our data at all spatial scales requires a low fraction of cold, gravitationally-bound gas in the SMC. We explore a combined model that incorporates both large scale thermal and dynamical equilibrium and cloud-scale photodissociation region structure and find that it reproduces our data well, as well as predicting a fraction of cold atomic gas very similar to that observed in the SMC.
We report the first APOGEE metallicities and alpha-element abundances measured for 3600 red giant stars spanning a large radial range of both the Large (LMC) and Small Magellanic Clouds (SMC), the largest Milky Way dwarf galaxies. Our sample is an order of magnitude larger than that of previous studies, and extends to much larger radial distances. These are the first results presented that make use of the newly installed Southern APOGEE instrument on the du Pont telescope at Las Campanas Observatory. Our unbiased sample of the LMC spans a large range in metallicity, from [Fe/H]=-0.2 to very metal-poor stars with [Fe/H]=-2.5, the most metal-poor Magellanic Clouds (MCs) stars detected to date. The LMC [alpha/Fe]-[Fe/H] distribution is very flat over a large metallicity range, but rises by ~0.1 dex at -1.0<[Fe/H]<-0.5. We interpret this as a sign of the known recent increase in MC star-formation activity, and are able to reproduce the pattern with a chemical evolution model that includes a recent starburst. At the metal-poor end, we capture the increase of [alpha/Fe] with decreasing [Fe/H], and constrain the alpha-knee to [Fe/H]<-2.2 in both MCs, implying a low star-formation efficiency of ~0.01 Gyr^-1. The MC knees are more metal poor than those of less massive Milky Way (MW) dwarf galaxies such as Fornax, Sculptor, or Sagittarius. One possible interpretation is that the MCs formed in a lower-density environment than the MW, a hypothesis that is consistent with the paradigm that the MCs fell into the MWs gravitational potential only recently.
Interacting galaxies surrounded by HI tidal debris are ideal sites for the study of young clusters and tidal galaxy formation. The process that triggers star formation in the low-density environments outside galaxies is still an open question. New clusters and galaxies of tidal origin are expected to have high metallicities for their luminosities. Spectroscopy of such objects is, however, at the limit of what can be done with existing 8-10m class telescopes, which has prevented statistical studies of these objects. NGC2865 is an UV-bright merging elliptical galaxy with shells and extended HI tails. The regions observed in this work were previously detected using multi-slit imaging spectroscopy. We obtain new multislit spectroscopy of six young star-forming regions around NGC2865, to determine their redshifts and metallicities. The six emission-line regions are located 16-40 kpc from NGC2865 and they have similar redshifts. They have ages of ~10Myears and an average metallicity of 12+log(O/H) ~ 8.6, suggesting a tidal origin for the regions. It is noted that they coincide with an extended HI tail, which has projected density of N$_{HI}$ < 10$^{19}$ cm$^{-2}$, and displays a low surface brightness counterpart. These regions may represent the youngest of the three populations of star clusters already identified in NGC2865. The high, nearly-solar, oxygen abundances found for the six regions in the vicinity of NGC2865 suggest that they were formed by pre-enriched material from the parent galaxy, from gas removed during the last major merger. Given the mass and the location of the HII regions, we can speculate that these young star-forming regions are potential precursors of globular clusters that will be part of the halo of NGC2865 in the future. Our result supports the use of the multi-slit imaging spectroscopy as a useful tool for finding nearly-formed stellar systems around galaxies.
Using a sample of dwarf galaxies observed using the VIMOS IFU on the VLT, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMR$_{text{SFR}}$) as well as HI-gas mass (FMR$_{text{HI}}$). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey to study the FMR$_{text{SFR}}$ and FMR$_{text{HI}}$ across the stellar mass range 10$^{6.6}$ to 10$^{8.8}$ M$_odot$, with metallicities as low as 12+log(O/H) = 7.67. We find the 1$sigma$ mean scatter in the MZR to be 0.05 dex. The 1$sigma$ mean scatter in the FMR$_{text{SFR}}$ (0.02 dex) is significantly lower than that of the MZR. The FMR$_{text{SFR}}$ is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10$^{-2.4}$ M$_odot$ yr$^{-1}$, however this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR$_{text{HI}}$. We also find that the FMR$_{text{HI}}$ is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FML$_{text{SFR}}$) and HI-gas mass (FML$_{text{HI}}$). We find that the FML$_{text{HI}}$ relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However the 1$sigma$ scatter for the FML$_{text{HI}}$ relation is not improved over the FMR$_{text{HI}}$ scenario. This leads us to conclude that the FMR$_{text{HI}}$ is the best candidate for a physically motivated fundamental metallicity relation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا