No Arabic abstract
We have been investigating rakugo speech synthesis as a challenging example of speech synthesis that entertains audiences. Rakugo is a traditional Japanese form of verbal entertainment similar to a combination of one-person stand-up comedy and comic storytelling and is popular even today. In rakugo, a performer plays multiple characters, and conversations or dialogues between the characters make the story progress. To investigate how close the quality of synthesized rakugo speech can approach that of professionals speech, we modeled rakugo speech using Tacotron 2, a state-of-the-art speech synthesis system that can produce speech that sounds as natural as human speech albeit under limited conditions, and an enhanced version of it with self-attention to better consider long-term dependencies. We also used global style tokens and manually labeled context features to enrich speaking styles. Through a listening test, we measured not only naturalness but also distinguishability of characters, understandability of the content, and the degree of entertainment. Although we found that the speech synthesis models could not yet reach the professional level, the results of the listening test provided interesting insights: 1) we should not focus only on the naturalness of synthesized speech but also the distinguishability of characters and the understandability of the content to further entertain audiences; 2) the fundamental frequency (fo) expressions of synthesized speech are poorer than those of human speech, and more entertaining speech should have richer fo expression. Although there is room for improvement, we believe this is an important stepping stone toward achieving entertaining speech synthesis at the professional level.
We have been working on speech synthesis for rakugo (a traditional Japanese form of verbal entertainment similar to one-person stand-up comedy) toward speech synthesis that authentically entertains audiences. In this paper, we propose a novel evaluation methodology using synthesized rakugo speech and real rakugo speech uttered by professional performers of three different ranks. The naturalness of the synthesized speech was comparable to that of the human speech, but the synthesized speech entertained listeners less than the performers of any rank. However, we obtained some interesting insights into challenges to be solved in order to achieve a truly entertaining rakugo synthesizer. For example, naturalness was not the most important factor, even though it has generally been emphasized as the most important point to be evaluated in the conventional speech synthesis field. More important factors were the understandability of the content and distinguishability of the characters in the rakugo story, both of which the synthesized rakugo speech was relatively inferior at as compared with the professional performers. We also found that fundamental frequency fo modeling should be further improved to better entertain audiences. These results show important steps to reaching authentically entertaining speech synthesis.
We describe Parrotron, an end-to-end-trained speech-to-speech conversion model that maps an input spectrogram directly to another spectrogram, without utilizing any intermediate discrete representation. The network is composed of an encoder, spectrogram and phoneme decoders, followed by a vocoder to synthesize a time-domain waveform. We demonstrate that this model can be trained to normalize speech from any speaker regardless of accent, prosody, and background noise, into the voice of a single canonical target speaker with a fixed accent and consistent articulation and prosody. We further show that this normalization model can be adapted to normalize highly atypical speech from a deaf speaker, resulting in significant improvements in intelligibility and naturalness, measured via a speech recognizer and listening tests. Finally, demonstrating the utility of this model on other speech tasks, we show that the same model architecture can be trained to perform a speech separation task
Text to speech (TTS), or speech synthesis, which aims to synthesize intelligible and natural speech given text, is a hot research topic in speech, language, and machine learning communities and has broad applications in the industry. As the development of deep learning and artificial intelligence, neural network-based TTS has significantly improved the quality of synthesized speech in recent years. In this paper, we conduct a comprehensive survey on neural TTS, aiming to provide a good understanding of current research and future trends. We focus on the key components in neural TTS, including text analysis, acoustic models and vocoders, and several advanced topics, including fast TTS, low-resource TTS, robust TTS, expressive TTS, and adaptive TTS, etc. We further summarize resources related to TTS (e.g., datasets, opensource implementations) and discuss future research directions. This survey can serve both academic researchers and industry practitioners working on TTS.
To provide more discriminative feedback for the second language (L2) learners to better identify their mispronunciation, we propose a method for exaggerated visual-speech feedback in computer-assisted pronunciation training (CAPT). The speech exaggeration is realized by an emphatic speech generation neural network based on Tacotron, while the visual exaggeration is accomplished by ADC Viseme Blending, namely increasing Amplitude of movement, extending the phones Duration and enhancing the color Contrast. User studies show that exaggerated feedback outperforms non-exaggerated version on helping learners with pronunciation identification and pronunciation improvement.
Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many institutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.