Do you want to publish a course? Click here

Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis Using Discrete Speech Representation

273   0   0.0 ( 0 )
 Added by Tao Tu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many institutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.



rate research

Read More

Multi-speaker speech synthesis is a technique for modeling multiple speakers voices with a single model. Although many approaches using deep neural networks (DNNs) have been proposed, DNNs are prone to overfitting when the amount of training data is limited. We propose a framework for multi-speaker speech synthesis using deep Gaussian processes (DGPs); a DGP is a deep architecture of Bayesian kernel regressions and thus robust to overfitting. In this framework, speaker information is fed to duration/acoustic models using speaker codes. We also examine the use of deep Gaussian process latent variable models (DGPLVMs). In this approach, the representation of each speaker is learned simultaneously with other model parameters, and therefore the similarity or dissimilarity of speakers is considered efficiently. We experimentally evaluated two situations to investigate the effectiveness of the proposed methods. In one situation, the amount of data from each speaker is balanced (speaker-balanced), and in the other, the data from certain speakers are limited (speaker-imbalanced). Subjective and objective evaluation results showed that both the DGP and DGPLVM synthesize multi-speaker speech more effective than a DNN in the speaker-balanced situation. We also found that the DGPLVM outperforms the DGP significantly in the speaker-imbalanced situation.
112 - Mingjian Chen , Xu Tan , Yi Ren 2020
Transformer-based text to speech (TTS) model (e.g., Transformer TTS~cite{li2019neural}, FastSpeech~cite{ren2019fastspeech}) has shown the advantages of training and inference efficiency over RNN-based model (e.g., Tacotron~cite{shen2018natural}) due to its parallel computation in training and/or inference. However, the parallel computation increases the difficulty while learning the alignment between text and speech in Transformer, which is further magnified in the multi-speaker scenario with noisy data and diverse speakers, and hinders the applicability of Transformer for multi-speaker TTS. In this paper, we develop a robust and high-quality multi-speaker Transformer TTS system called MultiSpeech, with several specially designed components/techniques to improve text-to-speech alignment: 1) a diagonal constraint on the weight matrix of encoder-decoder attention in both training and inference; 2) layer normalization on phoneme embedding in encoder to better preserve position information; 3) a bottleneck in decoder pre-net to prevent copy between consecutive speech frames. Experiments on VCTK and LibriTTS multi-speaker datasets demonstrate the effectiveness of MultiSpeech: 1) it synthesizes more robust and better quality multi-speaker voice than naive Transformer based TTS; 2) with a MutiSpeech model as the teacher, we obtain a strong multi-speaker FastSpeech model with almost zero quality degradation while enjoying extremely fast inference speed.
With rapid progress in neural text-to-speech (TTS) models, personalized speech generation is now in high demand for many applications. For practical applicability, a TTS model should generate high-quality speech with only a few audio samples from the given speaker, that are also short in length. However, existing methods either require to fine-tune the model or achieve low adaptation quality without fine-tuning. In this work, we propose StyleSpeech, a new TTS model which not only synthesizes high-quality speech but also effectively adapts to new speakers. Specifically, we propose Style-Adaptive Layer Normalization (SALN) which aligns gain and bias of the text input according to the style extracted from a reference speech audio. With SALN, our model effectively synthesizes speech in the style of the target speaker even from single speech audio. Furthermore, to enhance StyleSpeechs adaptation to speech from new speakers, we extend it to Meta-StyleSpeech by introducing two discriminators trained with style prototypes, and performing episodic training. The experimental results show that our models generate high-quality speech which accurately follows the speakers voice with single short-duration (1-3 sec) speech audio, significantly outperforming baselines.
This paper proposes novel algorithms for speaker embedding using subjective inter-speaker similarity based on deep neural networks (DNNs). Although conventional DNN-based speaker embedding such as a $d$-vector can be applied to multi-speaker modeling in speech synthesis, it does not correlate with the subjective inter-speaker similarity and is not necessarily appropriate speaker representation for open speakers whose speech utterances are not included in the training data. We propose two training algorithms for DNN-based speaker embedding model using an inter-speaker similarity matrix obtained by large-scale subjective scoring. One is based on similarity vector embedding and trains the model to predict a vector of the similarity matrix as speaker representation. The other is based on similarity matrix embedding and trains the model to minimize the squared Frobenius norm between the similarity matrix and the Gram matrix of $d$-vectors, i.e., the inter-speaker similarity derived from the $d$-vectors. We crowdsourced the inter-speaker similarity scores of 153 Japanese female speakers, and the experimental results demonstrate that our algorithms learn speaker embedding that is highly correlated with the subjective similarity. We also apply the proposed speaker embedding to multi-speaker modeling in DNN-based speech synthesis and reveal that the proposed similarity vector embedding improves synthetic speech quality for open speakers whose speech utterances are unseen during the training.
Neural sequence-to-sequence text-to-speech synthesis (TTS) can produce high-quality speech directly from text or simple linguistic features such as phonemes. Unlike traditional pipeline TTS, the neural sequence-to-sequence TTS does not require manually annotated and complicated linguistic features such as part-of-speech tags and syntactic structures for system training. However, it must be carefully designed and well optimized so that it can implicitly extract useful linguistic features from the input features. In this paper we investigate under what conditions the neural sequence-to-sequence TTS can work well in Japanese and English along with comparisons with deep neural network (DNN) based pipeline TTS systems. Unlike past comparative studies, the pipeline systems also use autoregressive probabilistic modeling and a neural vocoder. We investigated systems from three aspects: a) model architecture, b) model parameter size, and c) language. For the model architecture aspect, we adopt modified Tacotron systems that we previously proposed and their variants using an encoder from Tacotron or Tacotron2. For the model parameter size aspect, we investigate two model parameter sizes. For the language aspect, we conduct listening tests in both Japanese and English to see if our findings can be generalized across languages. Our experiments suggest that a) a neural sequence-to-sequence TTS system should have a sufficient number of model parameters to produce high quality speech, b) it should also use a powerful encoder when it takes characters as inputs, and c) the encoder still has a room for improvement and needs to have an improved architecture to learn supra-segmental features more appropriately.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا