Do you want to publish a course? Click here

The effects of cosmic rays on the formation of Milky Way-mass galaxies in a cosmological context

70   0   0.0 ( 0 )
 Added by Tobias Buck
 Publication date 2019
  fields Physics
and research's language is English
 Authors Tobias Buck




Ask ChatGPT about the research

We investigate the impact of cosmic rays (CR) and different modes of CR transport on the properties of Milky Way-mass galaxies in cosmological magneto-hydrodynamical simulations in the context of the AURIGA project. We systematically study how advection, anisotropic diffusion and additional Alfven-wave cooling affect the galactic disc and the circum-galactic medium (CGM). Global properties such as stellar mass and star formation rate vary little between simulations with and without various CR transport physics, whereas structural properties such as disc sizes, CGM densities or temperatures can be strongly affected. In our simulations, CRs affect the accretion of gas onto galaxies by modifying the CGM flow structure. This alters the angular momentum distribution which manifests itself as a difference in stellar and gaseous disc size. The strength of this effect depends on the CR transport model: CR advection results in the most compact discs while the Alfven-wave model resembles more the AURIGA model. The advection and diffusion models exhibit large ($rsim50$ kpc) CR pressure-dominated gas haloes causing a smoother and partly cooler CGM. The additional CR pressure smoothes small-scale density peaks and compensates for the missing thermal pressure support at lower CGM temperatures. In contrast, the Alfven-wave model is only CR pressure dominated at the disc-halo interface and only in this model the gamma-ray emission from hadronic interactions agrees with observations. In contrast to previous findings, we conclude that details of CR transport are critical for accurately predicting the impact of CR feedback on galaxy formation.



rate research

Read More

The star formation rate (SFR) of the Milky Way remains poorly known, with often-quoted values ranging from 1 to 10 solar masses per year. This situation persists despite the potential for the Milky Way to serve as the ultimate SFR calibrator for external galaxies. We show that various estimates for the Galactic SFR are consistent with one another once they have been normalized to the same initial mass function (IMF) and massive star models, converging to 1.9 +/- 0.4 M_sun/yr. However, standard SFR diagnostics are vulnerable to systematics founded in the use of indirect observational tracers sensitive only to high-mass stars. We find that absolute SFRs measured using resolved low/intermediate-mass stellar populations in Galactic H II regions are systematically higher by factors of ~2-3 as compared with calibrations for SFRs measured from mid-IR and radio emission. We discuss some potential explanations for this discrepancy and conclude that it could be allayed if (1) the power-law slope of the IMF for intermediate-mass (1.5 M_sun < m < 5 M_sun) stars were steeper than the Salpeter slope, or (2) a correction factor was applied to the extragalactic 24 micron SFR calibrations to account for the duration of star formation in individual mid-IR-bright H II regions relative to the lifetimes of O stars. Finally, we present some approaches for testing if a Galactic SFR of ~2 M_sun/yr is consistent with what we would measure if we could view the Milky Way as external observers. Using luminous radio supernova remnants and X-ray point sources, we find that the Milky Way deviates from expectations at the 1-3 sigma level, hinting that perhaps the Galactic SFR is overestimated or extragalactic SFRs need to be revised upwards.
We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star formation rates are discussed, and updated prescriptions for calculating star formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.
Cosmic rays (CRs) with ~GeV energies can contribute significantly to the energy and pressure budget in the interstellar, circumgalactic, and intergalactic medium (ISM, CGM, IGM). Recent cosmological simulations have begun to explore these effects, but almost all studies have been restricted to simplified models with constant CR diffusivity and/or streaming speeds. Physical models of CR propagation/scattering via extrinsic turbulence and self-excited waves predict transport coefficients which are complicated functions of local plasma properties. In a companion paper, we consider a wide range of observational constraints to identify proposed physically-motivated cosmic-ray propagation scalings which satisfy both detailed Milky Way (MW) and extra-galactic $gamma$-ray constraints. Here, we compare the effects of these models relative to simpler diffusion+streaming models on galaxy and CGM properties at dwarf through MW mass scales. The physical models predict large local variations in CR diffusivity, with median diffusivity increasing with galacto-centric radii and decreasing with galaxy mass and redshift. These effects lead to a more rapid dropoff of CR energy density in the CGM (compared to simpler models), in turn producing weaker effects of CRs on galaxy star formation rates (SFRs), CGM absorption profiles and galactic outflows. The predictions of the more physical CR models tend to lie in between models which ignore CRs entirely and models which treat CRs with constant diffusivity.
216 - Ryan McKinnon 2015
We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for $z gtrsim 5$. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.
Whether among the myriad tiny proto-galaxies there exists a population with similarities to present day galaxies is an open question. We show, using BlueTides, the first hydrodynamic simulation large enough to resolve the relevant scales, that the first massive galaxies to form are %in fact predicted to have extensive rotationally-supported disks. Although their morphology resembles in some ways Milky-way types seen at much lower redshifts, these high-redshift galaxies are smaller, denser, and richer in gas than their low redshift counterparts. From a kinematic analysis of a statistical sample of 216 galaxies at redshift $z=8-10$ we have found that disk galaxies make up 70% of the population of galaxies with stellar mass $10^{10} M_odot$ or greater. Cold Dark Matter cosmology therefore makes specific predictions for the population of large galaxies 500 million years after the Big Bang. We argue that wide-field satellite telescopes (e.g. WFIRST) will in the near future discover these first massive disk galaxies. The simplicity of their structure and formation history should make possible new tests of cosmology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا