Do you want to publish a course? Click here

Star Formation in the Milky Way and Nearby Galaxies

182   0   0.0 ( 0 )
 Added by Neal J. Evans II
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star formation rates are discussed, and updated prescriptions for calculating star formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.



rate research

Read More

206 - Ryan McKinnon 2015
We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for $z gtrsim 5$. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.
The star formation rate (SFR) of the Milky Way remains poorly known, with often-quoted values ranging from 1 to 10 solar masses per year. This situation persists despite the potential for the Milky Way to serve as the ultimate SFR calibrator for external galaxies. We show that various estimates for the Galactic SFR are consistent with one another once they have been normalized to the same initial mass function (IMF) and massive star models, converging to 1.9 +/- 0.4 M_sun/yr. However, standard SFR diagnostics are vulnerable to systematics founded in the use of indirect observational tracers sensitive only to high-mass stars. We find that absolute SFRs measured using resolved low/intermediate-mass stellar populations in Galactic H II regions are systematically higher by factors of ~2-3 as compared with calibrations for SFRs measured from mid-IR and radio emission. We discuss some potential explanations for this discrepancy and conclude that it could be allayed if (1) the power-law slope of the IMF for intermediate-mass (1.5 M_sun < m < 5 M_sun) stars were steeper than the Salpeter slope, or (2) a correction factor was applied to the extragalactic 24 micron SFR calibrations to account for the duration of star formation in individual mid-IR-bright H II regions relative to the lifetimes of O stars. Finally, we present some approaches for testing if a Galactic SFR of ~2 M_sun/yr is consistent with what we would measure if we could view the Milky Way as external observers. Using luminous radio supernova remnants and X-ray point sources, we find that the Milky Way deviates from expectations at the 1-3 sigma level, hinting that perhaps the Galactic SFR is overestimated or extragalactic SFRs need to be revised upwards.
We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly-inclined Milky Way-mass disc galaxies using HST data from the GHOSTS survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of between $-2$ and $-3.7$ and a diversity of stellar halo masses of $1-6times 10^{9}M_{odot}$, or $2-14%$ of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power law fit is $0.05-0.1$ dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios $c/a$ at $sim 25$ kpc between $0.4-0.75$. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the Milky Way and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients and density profiles.
The relations between star formation and properties of molecular clouds are studied based on a sample of star forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated molecular clouds and dense clumps. Radio continuum and mid-infrared emission were used to determine star formation rates, while 13CO and submillimeter dust continuum emission were used to obtain masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. We also test two specific theoretical models, one relying on the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star forming regions and extragalactic data. The star formation efficiency, defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas.
Several open questions on galaxy formation and evolution have their roots in the lack of a universal star formation law, that could univocally link the gas properties, e.g. its density, to the star formation rate (SFR) density. In a recent paper, we used a sample of nearby disc galaxies to infer the volumetric star formation (VSF) law, a tight correlation between the gas and the SFR volume densities derived under the assumption of hydrostatic equilibrium for the gas disc. However, due to the dearth of information about the vertical distribution of the SFR in these galaxies, we could not find a unique slope for the VSF law, but two alternative values. In this paper, we use the scale height of the SFR density distribution in our Galaxy adopting classical Cepheids (age$lesssim 200$ Myr) as tracers of star formation. We show that this latter is fully compatible with the flaring scale height expected from gas in hydrostatic equilibrium. These scale heights allowed us to convert the observed surface densities of gas and SFR into the corresponding volume densities. Our results indicate that the VSF law $rho_mathrm{SFR} propto rho_mathrm{gas}^alpha$ with $alpha approx 2$ is valid in the Milky Way as well as in nearby disc galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا