Do you want to publish a course? Click here

The formation of Milky Way-mass disk galaxies in the first 500 million years of a cold dark matter universe

147   0   0.0 ( 0 )
 Added by Yu Feng
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Whether among the myriad tiny proto-galaxies there exists a population with similarities to present day galaxies is an open question. We show, using BlueTides, the first hydrodynamic simulation large enough to resolve the relevant scales, that the first massive galaxies to form are %in fact predicted to have extensive rotationally-supported disks. Although their morphology resembles in some ways Milky-way types seen at much lower redshifts, these high-redshift galaxies are smaller, denser, and richer in gas than their low redshift counterparts. From a kinematic analysis of a statistical sample of 216 galaxies at redshift $z=8-10$ we have found that disk galaxies make up 70% of the population of galaxies with stellar mass $10^{10} M_odot$ or greater. Cold Dark Matter cosmology therefore makes specific predictions for the population of large galaxies 500 million years after the Big Bang. We argue that wide-field satellite telescopes (e.g. WFIRST) will in the near future discover these first massive disk galaxies. The simplicity of their structure and formation history should make possible new tests of cosmology.



rate research

Read More

Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic and SIDM interactions, we study a suite of cosmological-baryonic simulations of Milky-Way (MW)-mass galaxies from the Feedback in Realistic Environments (FIRE-2) project where we vary the SIDM self-interaction cross-section $sigma/m$. We compare the shape of the main dark matter (DM) halo at redshift $z=0$ predicted by SIDM simulations (at $sigma/m=0.1$, $1$, and $10$ cm$^2$ g$^{-1}$) with CDM simulations using the same initial conditions. In the presence of baryonic feedback effects, we find that SIDM models do not produce the large differences in the inner structure of MW-mass galaxies predicted by SIDM-only models. However, we do find that the radius where the shape of the total mass distribution begins to differ from that of the stellar mass distribution is dependent on $sigma/m$. This transition could potentially be used to set limits on the SIDM cross-section in the MW.
This paper presents an alternative scenario to explain the observed properties of the Milky Way dwarf Spheroidals (MW dSphs). We show that instead of resulting from large amounts of dark matter (DM), the large velocity dispersions observed along their lines of sight can be entirely accounted for by dynamical heating of DM-free systems resulting from MW tidal shocks. Such a regime is expected if the progenitors of the MW dwarfs are infalling gas-dominated galaxies. In this case, gas lost through ram-pressure leads to a strong decrease of self-gravity, a phase during which stars can radially expand, while leaving a gas-free dSph in which tidal shocks can easily develop. The DM content of dSphs is widely derived from the measurement of the dSphs self-gravity acceleration projected along the line of sight. We show that the latter strongly anti-correlates with the dSph distance from the MW, and that it is matched in amplitude by the acceleration caused by MW tidal shocks on DM-free dSphs. If correct, this implies that the MW dSphs would have negligible DM content, putting in question, e.g., their use as targets for DM direct searches, or our understanding of the Local Group mass assembly history. Most of the progenitors of the MW dSphs are likely extremely tiny dIrrs, and deeper observations and more accurate modeling are necessary to infer their properties as well as to derive star formation histories of the faintest dSphs.
112 - Shi Shao 2020
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have similar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.
69 - Tobias Buck 2019
We investigate the impact of cosmic rays (CR) and different modes of CR transport on the properties of Milky Way-mass galaxies in cosmological magneto-hydrodynamical simulations in the context of the AURIGA project. We systematically study how advection, anisotropic diffusion and additional Alfven-wave cooling affect the galactic disc and the circum-galactic medium (CGM). Global properties such as stellar mass and star formation rate vary little between simulations with and without various CR transport physics, whereas structural properties such as disc sizes, CGM densities or temperatures can be strongly affected. In our simulations, CRs affect the accretion of gas onto galaxies by modifying the CGM flow structure. This alters the angular momentum distribution which manifests itself as a difference in stellar and gaseous disc size. The strength of this effect depends on the CR transport model: CR advection results in the most compact discs while the Alfven-wave model resembles more the AURIGA model. The advection and diffusion models exhibit large ($rsim50$ kpc) CR pressure-dominated gas haloes causing a smoother and partly cooler CGM. The additional CR pressure smoothes small-scale density peaks and compensates for the missing thermal pressure support at lower CGM temperatures. In contrast, the Alfven-wave model is only CR pressure dominated at the disc-halo interface and only in this model the gamma-ray emission from hadronic interactions agrees with observations. In contrast to previous findings, we conclude that details of CR transport are critical for accurately predicting the impact of CR feedback on galaxy formation.
204 - Wenting Wang 2015
The mass of the dark matter halo of the Milky Way can be estimated by fitting analytical models to the phase-space distribution of dynamical tracers. We test this approach using realistic mock stellar halos constructed from the Aquarius N-body simulations of dark matter halos in the $Lambda$CDM cosmology. We extend the standard treatment to include a Navarro-Frenk-White (NFW) potential and use a maximum likelihood method to recover the parameters describing the simulated halos from the positions and velocities of their mock halo stars. We find that the estimate of halo mass is highly correlated with the estimate of halo concentration. The best-fit halo masses within the virial radius, $R_{200}$, are biased, ranging from a 40% underestimate to a 5% overestimate in the best case (when the tangential velocities of the tracers are included). There are several sources of bias. Deviations from dynamical equilibrium can potentially cause significant bias; deviations from spherical symmetry are relatively less important. Fits to stars at different galactocentric radii can give different mass estimates. By contrast, the model gives good constraints on the mass within the half-mass radius of tracers even when restricted to tracers within 60kpc. The recovered velocity anisotropies of tracers, $beta$, are biased systematically, but this does not affect other parameters if tangential velocity data are used as constraints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا