Do you want to publish a course? Click here

Asymmetry in interdependence makes a multilayer system more robust against cascading failures

85   0   0.0 ( 0 )
 Added by Ying-Cheng Lai
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Multilayer networked systems are ubiquitous in nature and engineering, and the robustness of these systems against failures is of great interest. A main line of theoretical pursuit has been percolation induced cascading failures, where interdependence between network layers is conveniently and tacitly assumed to be symmetric. In the real world, interdependent interactions are generally asymmetric. To uncover and quantify the impact of asymmetry in interdependence on network robustness, we focus on percolation dynamics in double-layer systems and implement the following failure mechanism: once a node in a network layer fails, the damage it can cause depends not only on its position in the layer but also on the position of its counterpart neighbor in the other layer. We find that the characteristics of the percolation transition depend on the degree of asymmetry, where the striking phenomenon of a switch in the nature of the phase transition from first- to second-order arises. We derive a theory to calculate the percolation transition points in both network layers, as well as the transition switching point, with strong numerical support from synthetic and empirical networks. Not only does our work shed light upon the factors that determine the robustness of multilayer networks against cascading failures, but it also provides a scenario by which the system can be designed or controlled to reach a desirable level of resilience.



rate research

Read More

Robustness of routing policies for networks is a central problem which is gaining increased attention with a growing awareness to safeguard critical infrastructure networks against natural and man-induced disruptions. Routing under limited information and the possibility of cascades through the network adds serious challenges to this problem. This abstract considers the framework of dynamical networks introduced in our earlier work [1,2], where the network is modeled by a system of ordinary differential equations derived from mass conservation laws on directed acyclic graphs with a single origin-destination pair and a constant inflow at the origin. The rate of change of the particle density on each link of the network equals the difference between the inflow and the outflow on that link. The latter is modeled to depend on the current particle density on that link through a flow function. The novel modeling element in this paper is that every link is assumed to have finite capacity for particle density and that the flow function is modeled to be strictly increasing as density increases from zero up to the maximum density capacity, and is discontinuous at the maximum density capacity, with the flow function value being zero at that point. This feature, in particular, allows for the possibility of spill-backs in our model. In this paper, we present our results on resilience of such networks under distributed routing, towards perturbations that reduce link-wise flow functions.
299 - Zhao-Hua Lin , Mi Feng , Ming Tang 2019
Non-Markovian spontaneous recovery processes with a time delay (memory) are ubiquitous in the real world. How does the non-Markovian characteristic affect failure propagation in complex networks? We consider failures due to internal causes at the nodal level and external failures due to an adverse environment, and develop a pair approximation analysis taking into account the two-node correlation. In general, a high failure stationary state can arise, corresponding to large-scale failures that can significantly compromise the functioning of the network. We uncover a striking phenomenon: memory associated with nodal recovery can counter-intuitively make the network more resilient against large-scale failures. In natural systems, the intrinsic non-Markovian characteristic of nodal recovery may thus be one reason for their resilience. In engineering design, incorporating certain non-Markovian features into the network may be beneficial to equipping it with a strong resilient capability to resist catastrophic failures.
We propose a dynamical model for cascading failures in single-commodity network flows. In the proposed model, the network state consists of flows and activation status of the links. Network dynamics is determined by a, possibly state-dependent and adversarial, disturbance process that reduces flow capacity on the links, and routing policies at the nodes that have access to the network state, but are oblivious to the presence of disturbance. Under the proposed dynamics, a link becomes irreversibly inactive either due to overload condition on itself or on all of its immediate downstream links. The coupling between link activation and flow dynamics implies that links to become inactive successively are not necessarily adjacent to each other, and hence the pattern of cascading failure under our model is qualitatively different than standard cascade models. The magnitude of a disturbance process is defined as the sum of cumulative capacity reductions across time and links of the network, and the margin of resilience of the network is defined as the infimum over the magnitude of all disturbance processes under which the links at the origin node become inactive. We propose an algorithm to compute an upper bound on the margin of resilience for the setting where the routing policy only has access to information about the local state of the network. For the limiting case when the routing policies update their action as fast as network dynamics, we identify sufficient conditions on network parameters under which the upper bound is tight under an appropriate routing policy. Our analysis relies on making connections between network parameters and monotonicity in network state evolution under proposed dynamics.
In complex networks, the failure of one or very few nodes may cause cascading failures. When this dynamical process stops in steady state, the size of the giant component formed by remaining un-failed nodes can be used to measure the severity of cascading failures, which is critically important for estimating the robustness of networks. In this paper, we provide a cascade of overload failure model with local load sharing mechanism, and then explore the threshold of node capacity when the large-scale cascading failures happen and un-failed nodes in steady state cannot connect to each other to form a large connected sub-network. We get the theoretical derivation of this threshold in degree-degree uncorrelated networks, and validate the effectiveness of this method in simulation. This threshold provide us a guidance to improve the network robustness under the premise of limited capacity resource when creating a network and assigning load. Therefore, this threshold is useful and important to analyze the robustness of networks.
In todays global economy, supply chain (SC) entities have become increasingly interconnected with demand and supply relationships due to the need for strategic outsourcing. Such interdependence among firms not only increases efficiency but also creates more vulnerabilities in the system. Natural and human-made disasters such as floods and transport accidents may halt operations and lead to economic losses. Due to the interdependence among firms, the adverse effects of any disruption can be amplified and spread throughout the systems. This paper aims at studying the robustness of SC networks against cascading failures. Considering the upper and lower bound load constraints, i.e., inventory and cost, we examine the fraction of failed entities under load decrease and load fluctuation scenarios. The simulation results obtained from synthetic networks and a European supply chain network [1] both confirm that the recovery strategies of surplus inventory and backup suppliers often adopted in actual SCs can enhance the system robustness, compared with the system without the recovery process. In addition, the system is relatively robust against load fluctuations but is more fragile to demand shocks. For the underload-driven model without the recovery process, we found an occurrence of a discontinuous phase transition. Differently from other systems studied under overload cascading failures, this system is more robust for power-law distributions than uniform distributions of the lower bound parameter for the studied scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا