No Arabic abstract
In todays global economy, supply chain (SC) entities have become increasingly interconnected with demand and supply relationships due to the need for strategic outsourcing. Such interdependence among firms not only increases efficiency but also creates more vulnerabilities in the system. Natural and human-made disasters such as floods and transport accidents may halt operations and lead to economic losses. Due to the interdependence among firms, the adverse effects of any disruption can be amplified and spread throughout the systems. This paper aims at studying the robustness of SC networks against cascading failures. Considering the upper and lower bound load constraints, i.e., inventory and cost, we examine the fraction of failed entities under load decrease and load fluctuation scenarios. The simulation results obtained from synthetic networks and a European supply chain network [1] both confirm that the recovery strategies of surplus inventory and backup suppliers often adopted in actual SCs can enhance the system robustness, compared with the system without the recovery process. In addition, the system is relatively robust against load fluctuations but is more fragile to demand shocks. For the underload-driven model without the recovery process, we found an occurrence of a discontinuous phase transition. Differently from other systems studied under overload cascading failures, this system is more robust for power-law distributions than uniform distributions of the lower bound parameter for the studied scenarios.
The structure of real-world multilayer infrastructure systems usually exhibits anisotropy due to constraints of the embedding space. For example, geographical features like mountains, rivers and shores influence the architecture of critical infrastructure networks. Moreover, such spatial networks are often non-homogeneous but rather have a modular structure with dense connections within communities and sparse connections between neighboring communities. When the networks of the different layers are interdependent, local failures and attacks may propagate throughout the system. Here we study the robustness of spatial interdependent networks which are both anisotropic and heterogeneous. We also evaluate the effect of localized attacks having different geometrical shapes. We find that anisotropic networks are more robust against localized attacks and that anisotropic attacks, surprisingly, even on isotropic structures, are more effective than isotropic attacks.
Various social, financial, biological and technological systems can be modeled by interdependent networks. It has been assumed that in order to remain functional, nodes in one network must receive the support from nodes belonging to different networks. So far these models have been limited to the case in which the failure propagates across networks only if the nodes lose all their supply nodes. In this paper we develop a more realistic model for two interdependent networks in which each node has its own supply threshold, i.e., they need the support of a minimum number of supply nodes to remain functional. In addition, we analyze different conditions of internal node failure due to disconnection from nodes within its own network. We show that several local internal failure conditions lead to similar nontrivial results. When there are no internal failures the model is equivalent to a bipartite system, which can be useful to model a financial market. We explore the rich behaviors of these models that include discontinuous and continuous phase transitions. Using the generating functions formalism, we analytically solve all the models in the limit of infinitely large networks and find an excellent agreement with the stochastic simulations.
Taking into account the fact that overload failures in real-world functional networks are usually caused by extreme values of temporally fluctuating loads that exceed the allowable range, we study the robustness of scale-free networks against cascading overload failures induced by fluctuating loads. In our model, loads are described by random walkers moving on a network and a node fails when the number of walkers on the node is beyond the node capacity. Our results obtained by using the generating function method shows that scale-free networks are more robust against cascading overload failures than ErdH{o}s-Renyi random graphs with homogeneous degree distributions. This conclusion is contrary to that predicted by previous works which neglect the effect of fluctuations of loads.
Cascading failure is a potentially devastating process that spreads on real-world complex networks and can impact the integrity of wide-ranging infrastructures, natural systems, and societal cohesiveness. One of the essential features that create complex network vulnerability to failure propagation is the dependency among their components, exposing entire systems to significant risks from destabilizing hazards such as human attacks, natural disasters or internal breakdowns. Developing realistic models for cascading failures as well as strategies to halt and mitigate the failure propagation can point to new approaches to restoring and strengthening real-world networks. In this review, we summarize recent progress on models developed based on physics and complex network science to understand the mechanisms, dynamics and overall impact of cascading failures. We present models for cascading failures in single networks and interdependent networks and explain how different dynamic propagation mechanisms can lead to an abrupt collapse and a rich dynamic behavior. Finally, we close the review with novel emerging strategies for containing cascades of failures and discuss open questions that remain to be addressed.
Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geometric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.