No Arabic abstract
In complex networks, the failure of one or very few nodes may cause cascading failures. When this dynamical process stops in steady state, the size of the giant component formed by remaining un-failed nodes can be used to measure the severity of cascading failures, which is critically important for estimating the robustness of networks. In this paper, we provide a cascade of overload failure model with local load sharing mechanism, and then explore the threshold of node capacity when the large-scale cascading failures happen and un-failed nodes in steady state cannot connect to each other to form a large connected sub-network. We get the theoretical derivation of this threshold in degree-degree uncorrelated networks, and validate the effectiveness of this method in simulation. This threshold provide us a guidance to improve the network robustness under the premise of limited capacity resource when creating a network and assigning load. Therefore, this threshold is useful and important to analyze the robustness of networks.
Cascading failure is a potentially devastating process that spreads on real-world complex networks and can impact the integrity of wide-ranging infrastructures, natural systems, and societal cohesiveness. One of the essential features that create complex network vulnerability to failure propagation is the dependency among their components, exposing entire systems to significant risks from destabilizing hazards such as human attacks, natural disasters or internal breakdowns. Developing realistic models for cascading failures as well as strategies to halt and mitigate the failure propagation can point to new approaches to restoring and strengthening real-world networks. In this review, we summarize recent progress on models developed based on physics and complex network science to understand the mechanisms, dynamics and overall impact of cascading failures. We present models for cascading failures in single networks and interdependent networks and explain how different dynamic propagation mechanisms can lead to an abrupt collapse and a rich dynamic behavior. Finally, we close the review with novel emerging strategies for containing cascades of failures and discuss open questions that remain to be addressed.
Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geometric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.
Multilayer networked systems are ubiquitous in nature and engineering, and the robustness of these systems against failures is of great interest. A main line of theoretical pursuit has been percolation induced cascading failures, where interdependence between network layers is conveniently and tacitly assumed to be symmetric. In the real world, interdependent interactions are generally asymmetric. To uncover and quantify the impact of asymmetry in interdependence on network robustness, we focus on percolation dynamics in double-layer systems and implement the following failure mechanism: once a node in a network layer fails, the damage it can cause depends not only on its position in the layer but also on the position of its counterpart neighbor in the other layer. We find that the characteristics of the percolation transition depend on the degree of asymmetry, where the striking phenomenon of a switch in the nature of the phase transition from first- to second-order arises. We derive a theory to calculate the percolation transition points in both network layers, as well as the transition switching point, with strong numerical support from synthetic and empirical networks. Not only does our work shed light upon the factors that determine the robustness of multilayer networks against cascading failures, but it also provides a scenario by which the system can be designed or controlled to reach a desirable level of resilience.
Previous work shows that the mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) in uncorrelated random scale-free networks is closely related to the exponent $gamma$ of power-law degree distribution $P(k)sim k^{-gamma}$, which describes the extent of heterogeneity of scale-free network structure. However, extensive empirical research indicates that real networked systems also display ubiquitous degree correlations. In this paper, we address the trapping issue on the Koch networks, which is a special random walk with one trap fixed at a hub node. The Koch networks are power-law with the characteristic exponent $gamma$ in the range between 2 and 3, they are either assortative or disassortative. We calculate exactly the MFPT that is the average of first-passage time from all other nodes to the trap. The obtained explicit solution shows that in large networks the MFPT varies lineally with node number $N$, which is obviously independent of $gamma$ and is sharp contrast to the scaling behavior of MFPT observed for uncorrelated random scale-free networks, where $gamma$ influences qualitatively the MFPT of trapping problem.
Immersive media streaming, especially virtual reality (VR)/360-degree video streaming which is very bandwidth demanding, has become more and more popular due to the rapid growth of the multimedia and networking deployments. To better explore the usage of resource and achieve better quality of experience (QoE) perceived by users, this paper develops an application-layer scheme to jointly exploit the available bandwidth from the LTE and Wi-Fi networks in 360-degree video streaming. This newly proposed scheme and the corresponding solution algorithms utilize the saliency of video, prediction of users view and the status information of users to obtain an optimal association of the users with different Wi-Fi access points (APs) for maximizing the systems utility. Besides, a novel buffer strategy is proposed to mitigate the influence of short-time prediction problem for transmitting 360-degree videos in time-varying networks. The promising performance and low complexity of the proposed scheme and algorithms are validated in simulations with various 360-degree videos.