Do you want to publish a course? Click here

Region Based Adversarial Synthesis of Facial Action Units

92   0   0.0 ( 0 )
 Added by Zhilei Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Facial expression synthesis or editing has recently received increasing attention in the field of affective computing and facial expression modeling. However, most existing facial expression synthesis works are limited in paired training data, low resolution, identity information damaging, and so on. To address those limitations, this paper introduces a novel Action Unit (AU) level facial expression synthesis method called Local Attentive Conditional Generative Adversarial Network (LAC-GAN) based on face action units annotations. Given desired AU labels, LAC-GAN utilizes local AU regional rules to control the status of each AU and attentive mechanism to combine several of them into the whole photo-realistic facial expressions or arbitrary facial expressions. In addition, unpaired training data is utilized in our proposed method to train the manipulation module with the corresponding AU labels, which learns a mapping between a facial expression manifold. Extensive qualitative and quantitative evaluations are conducted on the commonly used BP4D dataset to verify the effectiveness of our proposed AU synthesis method.



rate research

Read More

Employing deep learning-based approaches for fine-grained facial expression analysis, such as those involving the estimation of Action Unit (AU) intensities, is difficult due to the lack of a large-scale dataset of real faces with sufficiently diverse AU labels for training. In this paper, we consider how AU-level facial image synthesis can be used to substantially augment such a dataset. We propose an AU synthesis framework that combines the well-known 3D Morphable Model (3DMM), which intrinsically disentangles expression parameters from other face attributes, with models that adversarially generate 3DMM expression parameters conditioned on given target AU labels, in contrast to the more conventional approach of generating facial images directly. In this way, we are able to synthesize new combinations of expression parameters and facial images from desired AU labels. Extensive quantitative and qualitative results on the benchmark DISFA dataset demonstrate the effectiveness of our method on 3DMM facial expression parameter synthesis and data augmentation for deep learning-based AU intensity estimation.
Manipulating facial expressions is a challenging task due to fine-grained shape changes produced by facial muscles and the lack of input-output pairs for supervised learning. Unlike previous methods using Generative Adversarial Networks (GAN), which rely on cycle-consistency loss or sparse geometry (landmarks) loss for expression synthesis, we propose a novel GAN framework to exploit 3D dense (depth and surface normals) information for expression manipulation. However, a large-scale dataset containing RGB images with expression annotations and their corresponding depth maps is not available. To this end, we propose to use an off-the-shelf state-of-the-art 3D reconstruction model to estimate the depth and create a large-scale RGB-Depth dataset after a manual data clean-up process. We utilise this dataset to minimise the novel depth consistency loss via adversarial learning (note we do not have ground truth depth maps for generated face images) and the depth categorical loss of synthetic data on the discriminator. In addition, to improve the generalisation and lower the bias of the depth parameters, we propose to use a novel confidence regulariser on the discriminator side of the framework. We extensively performed both quantitative and qualitative evaluations on two publicly available challenging facial expression benchmarks: AffectNet and RaFD. Our experiments demonstrate that the proposed method outperforms the competitive baseline and existing arts by a large margin.
Current works formulate facial action unit (AU) recognition as a supervised learning problem, requiring fully AU-labeled facial images during training. It is challenging if not impossible to provide AU annotations for large numbers of facial images. Fortunately, AUs appear on all facial images, whether manually labeled or not, satisfy the underlying anatomic mechanisms and human behavioral habits. In this paper, we propose a deep semi-supervised framework for facial action unit recognition from partially AU-labeled facial images. Specifically, the proposed deep semi-supervised AU recognition approach consists of a deep recognition network and a discriminator D. The deep recognition network R learns facial representations from large-scale facial images and AU classifiers from limited ground truth AU labels. The discriminator D is introduced to enforce statistical similarity between the AU distribution inherent in ground truth AU labels and the distribution of the predicted AU labels from labeled and unlabeled facial images. The deep recognition network aims to minimize recognition loss from the labeled facial images, to faithfully represent inherent AU distribution for both labeled and unlabeled facial images, and to confuse the discriminator. During training, the deep recognition network R and the discriminator D are optimized alternately. Thus, the inherent AU distributions caused by underlying anatomic mechanisms are leveraged to construct better feature representations and AU classifiers from partially AU-labeled data during training. Experiments on two benchmark databases demonstrate that the proposed approach successfully captures AU distributions through adversarial learning and outperforms state-of-the-art AU recognition work.
In facial action unit (AU) recognition tasks, regional feature learning and AU relation modeling are two effective aspects which are worth exploring. However, the limited representation capacity of regional features makes it difficult for relation models to embed AU relationship knowledge. In this paper, we propose a novel multi-level adaptive ROI and graph learning (MARGL) framework to tackle this problem. Specifically, an adaptive ROI learning module is designed to automatically adjust the location and size of the predefined AU regions. Meanwhile, besides relationship between AUs, there exists strong relevance between regional features across multiple levels of the backbone network as level-wise features focus on different aspects of representation. In order to incorporate the intra-level AU relation and inter-level AU regional relevance simultaneously, a multi-level AU relation graph is constructed and graph convolution is performed to further enhance AU regional features of each level. Experiments on BP4D and DISFA demonstrate the proposed MARGL significantly outperforms the previous state-of-the-art methods.
In this paper, we propose a new automatic Action Units (AUs) recognition method used in a competition, Affective Behavior Analysis in-the-wild (ABAW). Our method tackles a problem of AUs label inconsistency among subjects by using pairwise deep architecture. While the baseline score is 0.31, our method achieved 0.67 in validation dataset of the competition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا