Do you want to publish a course? Click here

3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial Learning

105   0   0.0 ( 0 )
 Added by Rumeysa Bodur
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Manipulating facial expressions is a challenging task due to fine-grained shape changes produced by facial muscles and the lack of input-output pairs for supervised learning. Unlike previous methods using Generative Adversarial Networks (GAN), which rely on cycle-consistency loss or sparse geometry (landmarks) loss for expression synthesis, we propose a novel GAN framework to exploit 3D dense (depth and surface normals) information for expression manipulation. However, a large-scale dataset containing RGB images with expression annotations and their corresponding depth maps is not available. To this end, we propose to use an off-the-shelf state-of-the-art 3D reconstruction model to estimate the depth and create a large-scale RGB-Depth dataset after a manual data clean-up process. We utilise this dataset to minimise the novel depth consistency loss via adversarial learning (note we do not have ground truth depth maps for generated face images) and the depth categorical loss of synthetic data on the discriminator. In addition, to improve the generalisation and lower the bias of the depth parameters, we propose to use a novel confidence regulariser on the discriminator side of the framework. We extensively performed both quantitative and qualitative evaluations on two publicly available challenging facial expression benchmarks: AffectNet and RaFD. Our experiments demonstrate that the proposed method outperforms the competitive baseline and existing arts by a large margin.



rate research

Read More

77 - Xiaoxu Cai , Hui Yu , Jianwen Lou 2020
We present to recover the complete 3D facial geometry from a single depth view by proposing an Attention Guided Generative Adversarial Networks (AGGAN). In contrast to existing work which normally requires two or more depth views to recover a full 3D facial geometry, the proposed AGGAN is able to generate a dense 3D voxel grid of the face from a single unconstrained depth view. Specifically, AGGAN encodes the 3D facial geometry within a voxel space and utilizes an attention-guided GAN to model the illposed 2.5D depth-3D mapping. Multiple loss functions, which enforce the 3D facial geometry consistency, together with a prior distribution of facial surface points in voxel space are incorporated to guide the training process. Both qualitative and quantitative comparisons show that AGGAN recovers a more complete and smoother 3D facial shape, with the capability to handle a much wider range of view angles and resist to noise in the depth view than conventional methods
Employing deep learning-based approaches for fine-grained facial expression analysis, such as those involving the estimation of Action Unit (AU) intensities, is difficult due to the lack of a large-scale dataset of real faces with sufficiently diverse AU labels for training. In this paper, we consider how AU-level facial image synthesis can be used to substantially augment such a dataset. We propose an AU synthesis framework that combines the well-known 3D Morphable Model (3DMM), which intrinsically disentangles expression parameters from other face attributes, with models that adversarially generate 3DMM expression parameters conditioned on given target AU labels, in contrast to the more conventional approach of generating facial images directly. In this way, we are able to synthesize new combinations of expression parameters and facial images from desired AU labels. Extensive quantitative and qualitative results on the benchmark DISFA dataset demonstrate the effectiveness of our method on 3DMM facial expression parameter synthesis and data augmentation for deep learning-based AU intensity estimation.
While deep learning-based 3D face generation has made a progress recently, the problem of dynamic 3D (4D) facial expression synthesis is less investigated. In this paper, we propose a novel solution to the following question: given one input 3D neutral face, can we generate dynamic 3D (4D) facial expressions from it? To tackle this problem, we first propose a mesh encoder-decoder architecture (Expr-ED) that exploits a set of 3D landmarks to generate an expressive 3D face from its neutral counterpart. Then, we extend it to 4D by modeling the temporal dynamics of facial expressions using a manifold-valued GAN capable of generating a sequence of 3D landmarks from an expression label (Motion3DGAN). The generated landmarks are fed into the mesh encoder-decoder, ultimately producing a sequence of 3D expressive faces. By decoupling the two steps, we separately address the non-linearity induced by the mesh deformation and motion dynamics. The experimental results on the CoMA dataset show that our mesh encoder-decoder guided by landmarks brings a significant improvement with respect to other landmark-based 3D fitting approaches, and that we can generate high quality dynamic facial expressions. This framework further enables the 3D expression intensity to be continuously adapted from low to high intensity. Finally, we show our framework can be applied to other tasks, such as 2D-3D facial expression transfer.
To address the problem of data inconsistencies among different facial expression recognition (FER) datasets, many cross-domain FER methods (CD-FERs) have been extensively devised in recent years. Although each declares to achieve superior performance, fair comparisons are lacking due to the inconsistent choices of the source/target datasets and feature extractors. In this work, we first analyze the performance effect caused by these inconsistent choices, and then re-implement some well-performing CD-FER and recently published domain adaptation algorithms. We ensure that all these algorithms adopt the same source datasets and feature extractors for fair CD-FER evaluations. We find that most of the current leading algorithms use adversarial learning to learn holistic domain-invariant features to mitigate domain shifts. However, these algorithms ignore local features, which are more transferable across different datasets and carry more detailed content for fine-grained adaptation. To address these issues, we integrate graph representation propagation with adversarial learning for cross-domain holistic-local feature co-adaptation by developing a novel adversarial graph representation adaptation (AGRA) framework. Specifically, it first builds two graphs to correlate holistic and local regions within each domain and across different domains, respectively. Then, it extracts holistic-local features from the input image and uses learnable per-class statistical distributions to initialize the corresponding graph nodes. Finally, two stacked graph convolution networks (GCNs) are adopted to propagate holistic-local features within each domain to explore their interaction and across different domains for holistic-local feature co-adaptation. We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
104 - Tao Pu , Tianshui Chen , Yuan Xie 2020
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance in some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods. Codes and trained models are available at https://github.com/HCPLab-SYSU/AUE-CRL.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا