No Arabic abstract
We introduce a simple but efficient method for grand-canonical twist averaging in quantum Monte Carlo calculations. By evaluating the thermodynamic grand potential instead of the ground state total energy, we greatly reduce the sampling errors caused by twist-dependent fluctuations in the particle number. We apply this method to the electron gas and to metallic lithium, aluminum, and solid atomic hydrogen. We show that, even when using a small number of twists, grand-canonical twist averaging of the grand potential produces better estimates of ground state energies than the widely used canonical twist-averaging approach.
A Grand-canonical Monte-Carlo simulation method extended to simulate a mixture of salts is presented. Due to charge neutrality requirement of electrolyte solutions, ions must be added to or removed from the system in groups. This leads to some complications compared to regular Grand Canonical simulation. Here, a recipe for simulation of electrolyte solution of salt mixture is presented. It is then implemented to simulate solution of 1:1, 2:1 and 2:2 salts or their mixtures at different concentrations using the primitive ion model. The osmotic pressures of the electrolyte solutions are calculated and shown to depend linearly on the salt concentrations within the concentration range simulated. We also show that at the same concentration of divalent anions, the presence of divalent cations make it easier to insert monovalent cations into the system. This can explain some quantitative differences observed in experiments of the MgCl$_2$ salt mixture and MgSO$_4$ salt mixture.
The large surface density changes associated with the (100) noble metals surface hex-reconstruction suggest the use of non-particle conserving simulation methods. We present an example of a surface Grand Canonical Monte Carlo applied to the transformation of a square non reconstructed surface to the hexagonally covered low temperature stable Au(100). On the other hand, classical Molecular Dynamics allows to investigate microscopic details of the reconstruction dynamics, and we show, as an example, retraction of a step and its interplay with the surface reconstruction/deconstruction mechanism.
We show how canonical ensemble expectation values can be extracted from quantum Monte Carlo simulations in the grand canonical ensemble. In order to obtain results for all particle sectors, a modest number of grand canonical simulations must be performed, each at a different chemical potential. From the canonical ensemble results, grand canonical expectation values can be extracted as a continuous function of the chemical potential. Results are presented from the application of this method to the two-dimensional Hubbard model.
We describe an open-source implementation of the continuous-time interaction-expansion quantum Monte Carlo method for cluster-type impurity models with onsite Coulomb interactions and complex Weiss functions. The code is based on the ALPS libraries.
We analyze the problem of eliminating finite-size errors from quantum Monte Carlo (QMC) energy data. We demonstrate that both (i) adding a recently proposed [S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006)] finite-size correction to the Ewald energy and (ii) using the model periodic Coulomb (MPC) interaction [L. M. Fraser et al., Phys. Rev. B 53, 1814 (1996); P. R. C. Kent et al., Phys. Rev. B 59, 1917 (1999); A. J. Williamson et al., Phys. Rev. B 55, 4851 (1997)] are good solutions to the problem of removing finite-size effects from the interaction energy in cubic systems, provided the exchange-correlation (XC) hole has converged with respect to system size. However, we find that the MPC interaction distorts the XC hole in finite systems, implying that the Ewald interaction should be used to generate the configuration distribution. The finite-size correction of Chiesa et al. is shown to be incomplete in systems of low symmetry. Beyond-leading-order corrections to the kinetic energy are found to be necessary at intermediate and high densities, and we investigate the effect of adding such corrections to QMC data for the homogeneous electron gas. We analyze finite-size errors in two-dimensional systems and show that the leading-order behavior differs from that which has hitherto been supposed. We compare the efficiency of different twist-averaging methods for reducing single-particle finite-size errors and we examine the performance of various finite-size extrapolation formulas. Finally, we investigate the system-size scaling of biases in diffusion QMC.