Do you want to publish a course? Click here

Canonical and Grand Canonical Ensemble Expectation Values from Quantum Monte Carlo Simulations

82   0   0.0 ( 0 )
 Added by Robert Sedgewick
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show how canonical ensemble expectation values can be extracted from quantum Monte Carlo simulations in the grand canonical ensemble. In order to obtain results for all particle sectors, a modest number of grand canonical simulations must be performed, each at a different chemical potential. From the canonical ensemble results, grand canonical expectation values can be extracted as a continuous function of the chemical potential. Results are presented from the application of this method to the two-dimensional Hubbard model.



rate research

Read More

86 - Tobias Dornheim 2021
We present a practical analysis of the fermion sign problem in fermionic path integral Monte Carlo (PIMC) simulations in the grand-canonical ensemble (GCE). As a representative model system, we consider electrons in a $2D$ harmonic trap. We find that the sign problem in the GCE is even more severe than in the canonical ensemble at the same conditions, which, in general, makes the latter the preferred option. Despite these difficulties, we show that fermionic PIMC simulations in the GCE are still feasible in many cases, which potentially gives access to important quantities like the compressiblity or the Matsubara Greens function. This has important implications for contemporary fields of research such as warm dense matter, ultracold atoms, and electrons in quantum dots.
The large surface density changes associated with the (100) noble metals surface hex-reconstruction suggest the use of non-particle conserving simulation methods. We present an example of a surface Grand Canonical Monte Carlo applied to the transformation of a square non reconstructed surface to the hexagonally covered low temperature stable Au(100). On the other hand, classical Molecular Dynamics allows to investigate microscopic details of the reconstruction dynamics, and we show, as an example, retraction of a step and its interplay with the surface reconstruction/deconstruction mechanism.
78 - Sam Azadi , , W. M. C. Foulkes 2019
We introduce a simple but efficient method for grand-canonical twist averaging in quantum Monte Carlo calculations. By evaluating the thermodynamic grand potential instead of the ground state total energy, we greatly reduce the sampling errors caused by twist-dependent fluctuations in the particle number. We apply this method to the electron gas and to metallic lithium, aluminum, and solid atomic hydrogen. We show that, even when using a small number of twists, grand-canonical twist averaging of the grand potential produces better estimates of ground state energies than the widely used canonical twist-averaging approach.
67 - Toan T. Nguyen 2017
A Grand-canonical Monte-Carlo simulation method extended to simulate a mixture of salts is presented. Due to charge neutrality requirement of electrolyte solutions, ions must be added to or removed from the system in groups. This leads to some complications compared to regular Grand Canonical simulation. Here, a recipe for simulation of electrolyte solution of salt mixture is presented. It is then implemented to simulate solution of 1:1, 2:1 and 2:2 salts or their mixtures at different concentrations using the primitive ion model. The osmotic pressures of the electrolyte solutions are calculated and shown to depend linearly on the salt concentrations within the concentration range simulated. We also show that at the same concentration of divalent anions, the presence of divalent cations make it easier to insert monovalent cations into the system. This can explain some quantitative differences observed in experiments of the MgCl$_2$ salt mixture and MgSO$_4$ salt mixture.
308 - A. Crisanti , A. Sarracino , 2019
In this paper we take a fresh look at the long standing issue of the nature of macroscopic density fluctuations in the grand canonical treatment of the Bose-Einstein condensation (BEC). Exploiting the close analogy between the spherical and mean-spherical models of magnetism with the canonical and grand canonical treatment of the ideal Bose gas, we show that BEC stands for different phenomena in the two ensembles: an ordering transition of the type familiar from ferromagnetism in the canonical ensemble and condensation of fluctuations, i.e. growth of macroscopic fluctuations in a single degree of freedom, without ordering, in the grand canonical case. We further clarify that this is a manifestation of nonequivalence of the ensembles, due to the existence of long range correlations in the grand canonical one. Our results shed new light on the recent experimental realization of BEC in a photon gas, suggesting that the observed BEC when prepared under grand canonical conditions is an instance of condensation of fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا