We describe an open-source implementation of the continuous-time interaction-expansion quantum Monte Carlo method for cluster-type impurity models with onsite Coulomb interactions and complex Weiss functions. The code is based on the ALPS libraries.
Quantum Monte Carlo (QMC) simulations of correlated electron systems provide unbiased information about system behavior at a quantum critical point (QCP) and can verify or disprove the existing theories of non-Fermi liquid (NFL) behavior at a QCP. However, simulations are carried out at a finite temperature, where quantum-critical features are masked by finite temperature effects. Here we present a theoretical framework within which it is possible to separate thermal and quantum effects and extract the information about NFL physics at $T=0$. We demonstrate our method for a specific example of 2D fermions near a Ising-ferromagnetic QCP. We show that one can extract from QMC data the zero-temperature form of fermionic self-energy $Sigma (omega)$ even though the leading contribution to the self-energy comes from thermal effects. We find that the frequency dependence of $Sigma (omega)$ agrees well with the analytic form obtained within the Eliashberg theory of dynamical quantum criticality, and obeys $omega^{2/3}$ scaling at low frequencies. Our results open up an avenue for QMC studies of quantum-critical metals.
The negative sign problem in quantum Monte Carlo (QMC) simulations of cluster impurity problems is the major bottleneck in cluster dynamical mean field calculations. In this paper we systematically investigate the dependence of the sign problem on the single-particle basis. We explore both the hybridization-expansion and the interaction-expansion variants of continuous-time QMC for three-site and four-site impurity models with baths that are diagonal in the orbital degrees of freedom. We find that the sign problem in these models can be substantially reduced by using a non-trivial single-particle basis. Such bases can be generated by diagonalizing a subset of the intracluster hoppings.
In the present paper, we present an efficient continuous-time quantum Monte Carlo impurity solver with high acceptance rate at low temperature for multi-orbital quantum impurity models with general interaction. In this hybridization expansion impurity solver, the imaginary time evolution operator for the high energy multiplets, which decays very rapidly with the imaginary time, is approximated by a probability normalized $delta$-function. As the result, the virtual charge fluctuations of $f^{n}rightarrow f^{npm1}$ are well included on the same footing without applying Schrieffer-Wolff transformation explicitly. As benchmarks, our algorithm perfectly reproduces the results for both Coqblin-Schriffeer and Kondo lattice models obtained by CT-J method developed by Otsuki {it et al}. Furthermore, it allows capturing low energy physics of heavy-fermion materials directly without fitting the exchange coupling $J$ in the Kondo model.
We derive equations of motion for Greens functions of the multi-orbital Anderson impurity model by differentiating symmetrically with respect to all time arguments. The resulting equations relate the one- and two-particle Greens function to correlators of up to six particles at four times. As an application we consider continuous-time quantum Monte Carlo simulations in the hybridization expansion, which hitherto suffered from notoriously high noise levels at large Matsubara frequencies. Employing the derived symmetric improved estimators overcomes this problem.
We investigate the quantum phase transitions of a disordered nanowire from superconducting to metallic behavior by employing extensive Monte Carlo simulations. To this end, we map the quantum action onto a (1+1)-dimensional classical XY model with long-range interactions in imaginary time. We then analyze the finite-size scaling behavior of the order parameter susceptibility, the correlation time, the superfluid density, and the compressibility. We find strong numerical evidence for the critical behavior to be of infinite-randomness type and to belong to the random transverse-field Ising universality class, as predicted by a recent strong disorder renormalization group calculation.