Do you want to publish a course? Click here

From Species to Cultivar: Soybean Cultivar Recognition using Multiscale Sliding Chord Matching of Leaf Images

331   0   0.0 ( 0 )
 Added by Yongsheng Gao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Leaf image recognition techniques have been actively researched for plant species identification. However it remains unclear whether leaf patterns can provide sufficient information for cultivar recognition. This paper reports the first attempt on soybean cultivar recognition from plant leaves which is not only a challenging research problem but also important for soybean cultivar evaluation, selection and production in agriculture. In this paper, we propose a novel multiscale sliding chord matching (MSCM) approach to extract leaf patterns that are distinctive for soybean cultivar identification. A chord is defined to slide along the contour for measuring the synchronised patterns of exterior shape and interior appearance of soybean leaf images. A multiscale sliding chord strategy is developed to extract features in a coarse-to-fine hierarchical order. A joint description that integrates the leaf descriptors from different parts of a soybean plant is proposed for further enhancing the discriminative power of cultivar description. We built a cultivar leaf image database, SoyCultivar, consisting of 1200 sample leaf images from 200 soybean cultivars for performance evaluation. Encouraging experimental results of the proposed method in comparison to the state-of-the-art leaf species recognition methods demonstrate the availability of cultivar information in soybean leaves and effectiveness of the proposed MSCM for soybean cultivar identification, which may advance the research in leaf recognition from species to cultivar.



rate research

Read More

This paper presents results on the detection and identification mango fruits from colour images of trees. We evaluate the behaviour and the performances of the Faster R-CNN network to determine whether it is robust enough to detect and classify fruits under particularly heterogeneous conditions in terms of plant cultivars, plantation scheme, and visual information acquisition contexts. The network is trained to distinguish the Kent, Keitt, and Boucodiekhal mango cultivars from 3,000 representative labelled fruit annotations. The validation set composed of about 7,000 annotations was then tested with a confidence threshold of 0.7 and a Non-Maximal-Suppression threshold of 0.25. With a F1-score of 0.90, the Faster R-CNN is well suitable to the simple fruit detection in tiles of 500x500 pixels. We then combine a multi-tiling approach with a Jaccard matrix to merge the different parts of objects detected several times, and thus report the detections made at the tile scale to the native 6,000x4,000 pixel size images. Nonetheless with a F1-score of 0.56, the cultivar identification Faster R-CNN network presents some limitations for simultaneously detecting the mango fruits and identifying their respective cultivars. Despite the proven errors in fruit detection, the cultivar identification rates of the detected mango fruits are in the order of 80%. The ideal solution could combine a Mask R-CNN for the image pre-segmentation of trees and a double-stream Faster R-CNN for detecting the mango fruits and identifying their respective cultivar to provide predictions more relevant to users expectations.
Underwater surveys conducted using divers or robots equipped with customized camera payloads can generate a large number of images. Manual review of these images to extract ecological data is prohibitive in terms of time and cost, thus providing strong incentive to automate this process using machine learning solutions. In this paper, we introduce a multi-species detector and classifier for seagrasses based on a deep convolutional neural network (achieved an overall accuracy of 92.4%). We also introduce a simple method to semi-automatically label image patches and therefore minimize manual labelling requirement. We describe and release publicly the dataset collected in this study as well as the code and pre-trained models to replicate our experiments at: https://github.com/csiro-robotics/deepseagrass
Modern scientific and technological advances are allowing botanists to use computer vision-based approaches for plant identification tasks. These approaches have their own challenges. Leaf classification is a computer-vision task performed for the automated identification of plant species, a serious challenge due to variations in leaf morphology, including its size, texture, shape, and venation. Researchers have recently become more inclined toward deep learning-based methods rather than conventional feature-based methods due to the popularity and successful implementation of deep learning methods in image analysis, object recognition, and speech recognition. In this paper, a botanists behavior was modeled in leaf identification by proposing a highly-efficient method of maximum behavioral resemblance developed through three deep learning-based models. Different layers of the three models were visualized to ensure that the botanists behavior was modeled accurately. The first and second models were designed from scratch.Regarding the third model, the pre-trained architecture MobileNetV2 was employed along with the transfer-learning technique. The proposed method was evaluated on two well-known datasets: Flavia and MalayaKew. According to a comparative analysis, the suggested approach was more accurate than hand-crafted feature extraction methods and other deep learning techniques in terms of 99.67% and 99.81% accuracy. Unlike conventional techniques that have their own specific complexities and depend on datasets, the proposed method required no hand-crafted feature extraction, and also increased accuracy and distributability as compared with other deep learning techniques. It was further considerably faster than other methods because it used shallower networks with fewer parameters and did not use all three models recurrently.
151 - Yingjie Liu 2020
Although much significant progress has been made in the research field of object detection with deep learning, there still exists a challenging task for the objects with small size, which is notably pronounced in UAV-captured images. Addressing these issues, it is a critical need to explore the feature extraction methods that can extract more sufficient feature information of small objects. In this paper, we propose a novel method called Dense Multiscale Feature Fusion Pyramid Networks(DMFFPN), which is aimed at obtaining rich features as much as possible, improving the information propagation and reuse. Specifically, the dense connection is designed to fully utilize the representation from the different convolutional layers. Furthermore, cascade architecture is applied in the second stage to enhance the localization capability. Experiments on the drone-based datasets named VisDrone-DET suggest a competitive performance of our method.
There is a warning light for the loss of plant habitats worldwide that entails concerted efforts to conserve plant biodiversity. Thus, plant species classification is of crucial importance to address this environmental challenge. In recent years, there is a considerable increase in the number of studies related to plant taxonomy. While some researchers try to improve their recognition performance using novel approaches, others concentrate on computational optimization for their framework. In addition, a few studies are diving into feature extraction to gain significantly in terms of accuracy. In this paper, we propose an effective method for the leaf recognition problem. In our proposed approach, a leaf goes through some pre-processing to extract its refined color image, vein image, xy-projection histogram, handcrafted shape, texture features, and Fourier descriptors. These attributes are then transformed into a better representation by neural network-based encoders before a support vector machine (SVM) model is utilized to classify different leaves. Overall, our approach performs a state-of-the-art result on the Flavia leaf dataset, achieving the accuracy of 99.58% on test sets under random 10-fold cross-validation and bypassing the previous methods. We also release our codes (Scripts are available at https://github.com/dinhvietcuong1996/LeafRecognition) for contributing to the research community in the leaf classification problem.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا