Do you want to publish a course? Click here

Multi-species Seagrass Detection and Classification from Underwater Images

251   0   0.0 ( 0 )
 Added by Peyman Moghadam
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Underwater surveys conducted using divers or robots equipped with customized camera payloads can generate a large number of images. Manual review of these images to extract ecological data is prohibitive in terms of time and cost, thus providing strong incentive to automate this process using machine learning solutions. In this paper, we introduce a multi-species detector and classifier for seagrasses based on a deep convolutional neural network (achieved an overall accuracy of 92.4%). We also introduce a simple method to semi-automatically label image patches and therefore minimize manual labelling requirement. We describe and release publicly the dataset collected in this study as well as the code and pre-trained models to replicate our experiments at: https://github.com/csiro-robotics/deepseagrass

rate research

Read More

Histopathology slides are routinely marked by pathologists using permanent ink markers that should not be removed as they form part of the medical record. Often tumour regions are marked up for the purpose of highlighting features or other downstream processing such an gene sequencing. Once digitised there is no established method for removing this information from the whole slide images limiting its usability in research and study. Removal of marker ink from these high-resolution whole slide images is non-trivial and complex problem as they contaminate different regions and in an inconsistent manner. We propose an efficient pipeline using convolution neural networks that results in ink-free images without compromising information and image resolution. Our pipeline includes a sequential classical convolution neural network for accurate classification of contaminated image tiles, a fast region detector and a domain adaptive cycle consistent adversarial generative model for restoration of foreground pixels. Both quantitative and qualitative results on four different whole slide images show that our approach yields visually coherent ink-free whole slide images.
Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations in water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification.
Leaf image recognition techniques have been actively researched for plant species identification. However it remains unclear whether leaf patterns can provide sufficient information for cultivar recognition. This paper reports the first attempt on soybean cultivar recognition from plant leaves which is not only a challenging research problem but also important for soybean cultivar evaluation, selection and production in agriculture. In this paper, we propose a novel multiscale sliding chord matching (MSCM) approach to extract leaf patterns that are distinctive for soybean cultivar identification. A chord is defined to slide along the contour for measuring the synchronised patterns of exterior shape and interior appearance of soybean leaf images. A multiscale sliding chord strategy is developed to extract features in a coarse-to-fine hierarchical order. A joint description that integrates the leaf descriptors from different parts of a soybean plant is proposed for further enhancing the discriminative power of cultivar description. We built a cultivar leaf image database, SoyCultivar, consisting of 1200 sample leaf images from 200 soybean cultivars for performance evaluation. Encouraging experimental results of the proposed method in comparison to the state-of-the-art leaf species recognition methods demonstrate the availability of cultivar information in soybean leaves and effectiveness of the proposed MSCM for soybean cultivar identification, which may advance the research in leaf recognition from species to cultivar.
Given a sufficiently large training dataset, it is relatively easy to train a modern convolution neural network (CNN) as a required image classifier. However, for the task of fish classification and/or fish detection, if a CNN was trained to detect or classify particular fish species in particular background habitats, the same CNN exhibits much lower accuracy when applied to new/unseen fish species and/or fish habitats. Therefore, in practice, the CNN needs to be continuously fine-tuned to improve its classification accuracy to handle new project-specific fish species or habitats. In this work we present a labelling-efficient method of training a CNN-based fish-detector (the Xception CNN was used as the base) on relatively small numbers (4,000) of project-domain underwater fish/no-fish images from 20 different habitats. Additionally, 17,000 of known negative (that is, missing fish) general-domain (VOC2012) above-water images were used. Two publicly available fish-domain datasets supplied additional 27,000 of above-water and underwater positive/fish images. By using this multi-domain collection of images, the trained Xception-based binary (fish/not-fish) classifier achieved 0.17% false-positives and 0.61% false-negatives on the projects 20,000 negative and 16,000 positive holdout test images, respectively. The area under the ROC curve (AUC) was 99.94%.
We propose a new method for cancer subtype classification from histopathological images, which can automatically detect tumor-specific features in a given whole slide image (WSI). The cancer subtype should be classified by referring to a WSI, i.e., a large-sized image (typically 40,000x40,000 pixels) of an entire pathological tissue slide, which consists of cancer and non-cancer portions. One difficulty arises from the high cost associated with annotating tumor regions in WSIs. Furthermore, both global and local image features must be extracted from the WSI by changing the magnifications of the image. In addition, the image features should be stably detected against the differences of staining conditions among the hospitals/specimens. In this paper, we develop a new CNN-based cancer subtype classification method by effectively combining multiple-instance, domain adversarial, and multi-scale learning frameworks in order to overcome these practical difficulties. When the proposed method was applied to malignant lymphoma subtype classifications of 196 cases collected from multiple hospitals, the classification performance was significantly better than the standard CNN or other conventional methods, and the accuracy compared favorably with that of standard pathologists.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا