No Arabic abstract
Modern scientific and technological advances are allowing botanists to use computer vision-based approaches for plant identification tasks. These approaches have their own challenges. Leaf classification is a computer-vision task performed for the automated identification of plant species, a serious challenge due to variations in leaf morphology, including its size, texture, shape, and venation. Researchers have recently become more inclined toward deep learning-based methods rather than conventional feature-based methods due to the popularity and successful implementation of deep learning methods in image analysis, object recognition, and speech recognition. In this paper, a botanists behavior was modeled in leaf identification by proposing a highly-efficient method of maximum behavioral resemblance developed through three deep learning-based models. Different layers of the three models were visualized to ensure that the botanists behavior was modeled accurately. The first and second models were designed from scratch.Regarding the third model, the pre-trained architecture MobileNetV2 was employed along with the transfer-learning technique. The proposed method was evaluated on two well-known datasets: Flavia and MalayaKew. According to a comparative analysis, the suggested approach was more accurate than hand-crafted feature extraction methods and other deep learning techniques in terms of 99.67% and 99.81% accuracy. Unlike conventional techniques that have their own specific complexities and depend on datasets, the proposed method required no hand-crafted feature extraction, and also increased accuracy and distributability as compared with other deep learning techniques. It was further considerably faster than other methods because it used shallower networks with fewer parameters and did not use all three models recurrently.
Identification of plant disease is usually done through visual inspection or during laboratory examination which causes delays resulting in yield loss by the time identification is complete. On the other hand, complex deep learning models perform the task with reasonable performance but due to their large size and high computational requirements, they are not suited to mobile and handheld devices. Our proposed approach contributes automated identification of plant diseases which follows a sequence of steps involving pre-processing, segmentation of diseased leaf area, calculation of features based on the Gray-Level Co-occurrence Matrix (GLCM), feature selection and classification. In this study, six color features and twenty-two texture features have been calculated. Support vector machines is used to perform one-vs-one classification of plant disease. The proposed model of disease identification provides an accuracy of 98.79% with a standard deviation of 0.57 on 10-fold cross-validation. The accuracy on a self-collected dataset is 82.47% for disease identification and 91.40% for healthy and diseased classification. The reported performance measures are better or comparable to the existing approaches and highest among the feature-based methods, presenting it as the most suitable method to automated leaf-based plant disease identification. This prototype system can be extended by adding more disease categories or targeting specific crop or disease categories.
Automatic leaf segmentation, as well as identification and classification methods that built upon it, are able to provide immediate monitoring for plant growth status to guarantee the output. Although 3D plant point clouds contain abundant phenotypic features, plant leaves are usually distributed in clusters and are sometimes seriously overlapped in the canopy. Therefore, it is still a big challenge to automatically segment each individual leaf from a highly crowded plant canopy in 3D for plant phenotyping purposes. In this work, we propose an overlapping-free individual leaf segmentation method for plant point clouds using the 3D filtering and facet region growing. In order to separate leaves with different overlapping situations, we develop a new 3D joint filtering operator, which integrates a Radius-based Outlier Filter (RBOF) and a Surface Boundary Filter (SBF) to help to separate occluded leaves. By introducing the facet over-segmentation and facet-based region growing, the noise in segmentation is suppressed and labeled leaf centers can expand to their whole leaves, respectively. Our method can work on point clouds generated from three types of 3D imaging platforms, and also suitable for different kinds of plant species. In experiments, it obtains a point-level cover rate of 97% for Epipremnum aureum, 99% for Monstera deliciosa, 99% for Calathea makoyana, and 87% for Hedera nepalensis sample plants. At the leaf level, our method reaches an average Recall at 100.00%, a Precision at 99.33%, and an average F-measure at 99.66%, respectively. The proposed method can also facilitate the automatic traits estimation of each single leaf (such as the leaf area, length, and width), which has potential to become a highly effective tool for plant research and agricultural engineering.
Agriculture is an essential industry in the both society and economy of a country. However, the pests and diseases cause a great amount of reduction in agricultural production while there is not sufficient guidance for farmers to avoid this disaster. To address this problem, we apply CNNs to plant disease recognition by building a classification model. Within the dataset of 3,642 images of apple leaves, We use a pre-trained image classification model Restnet34 based on a Convolutional neural network (CNN) with the Fastai framework in order to save the training time. Overall, the accuracy of classification is 93.765%.
Early wildfire detection is of paramount importance to avoid as much damage as possible to the environment, properties, and lives. Deep Learning (DL) models that can leverage both visible and infrared information have the potential to display state-of-the-art performance, with lower false-positive rates than existing techniques. However, most DL-based image fusion methods have not been evaluated in the domain of fire imagery. Additionally, to the best of our knowledge, no publicly available dataset contains visible-infrared fused fire images. There is a growing interest in DL-based image fusion techniques due to their reduced complexity. Due to the latter, we select three state-of-the-art, DL-based image fusion techniques and evaluate them for the specific task of fire image fusion. We compare the performance of these methods on selected metrics. Finally, we also present an extension to one of the said methods, that we called FIRe-GAN, that improves the generation of artificial infrared images and fused ones on selected metrics.
Since medical image data sets contain few samples and singular features, lesions are viewed as highly similar to other tissues. The traditional neural network has a limited ability to learn features. Even if a host of feature maps is expanded to obtain more semantic information, the accuracy of segmenting the final medical image is slightly improved, and the features are excessively redundant. To solve the above problems, in this paper, we propose a novel end-to-end semantic segmentation algorithm, DT-Net, and use two new convolution strategies to better achieve end-to-end semantic segmentation of medical images. 1. In the feature mining and feature fusion stage, we construct a multi-directional integrated convolution (MDIC). The core idea is to use the multi-scale convolution to enhance the local multi-directional feature maps to generate enhanced feature maps and to mine the generated features that contain more semantics without increasing the number of feature maps. 2. We also aim to further excavate and retain more meaningful deep features reduce a host of noise features in the training process. Therefore, we propose a convolution thresholding strategy. The central idea is to set a threshold to eliminate a large number of redundant features and reduce computational complexity. Through the two strategies proposed above, the algorithm proposed in this paper produces state-of-the-art results on two public medical image datasets. We prove in detail that our proposed strategy plays an important role in feature mining and eliminating redundant features. Compared with the existing semantic segmentation algorithms, our proposed algorithm has better robustness.