Do you want to publish a course? Click here

Direct coupling of ferromagnetic moment and ferroelectric polarization in BiFeO$_3$

109   0   0.0 ( 0 )
 Added by Shiro Kawachi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spin-driven component of electric polarization in a single crystal of multiferroic BiFeO$_{3}$ was experimentally investigated in pulsed high magnetic fields up to 41 T. Sequential measurements of electric polarization for various magnetic field directions provide clear evidence of electric polarization normal to the hexagonal $c$ axis (${bf P}_{rm t}$) in not only the cycloidal phase, but also the field-induced canted antiferromagnetic phase. The direction of ${bf P}_{rm t}$ is directly coupled with the ferromagnetic moment in the canted antiferromagnetic phase, and thus controlled by changing the direction of the applied magnetic field. This magnetoelectric coupling is reasonably reproduced by the metal-ligand hybridization model.

rate research

Read More

We report the results of direct measurement of remanent hysteresis loops on nanochains of BiFeO$_3$ at room temperature under zero and $sim$20 kOe magnetic field. We noticed a suppression of remanent polarization by nearly $sim$40% under the magnetic field. The powder neutron diffraction data reveal significant ion displacements under a magnetic field which seems to be the origin of the suppression of polarization. The isolated nanoparticles, comprising the chains, exhibit evolution of ferroelectric domains under dc electric field and complete 180$^o$ switching in switching-spectroscopy piezoresponse force microscopy. They also exhibit stronger ferromagnetism with nearly an order of magnitude higher saturation magnetization than that of the bulk sample. These results show that the nanoscale BiFeO$_3$ exhibits coexistence of ferroelectric and ferromagnetic order and a strong magnetoelectric multiferroic coupling at room temperature comparable to what some of the type-II multiferroics show at a very low temperature.
We have performed Raman scattering investigations on the high energy magnetic excitations in a BiFeO$_3$ single crystal as a function of both temperature and laser excitation energy. A strong feature observed at 1250 cm$^{-1}$ in the Raman spectra has been previously assigned to two phonon overtone. We show here that its unusual frequency shift with the excitation energy and its asymmetric temperature dependent Fano lineshape reveal a strong coupling to magnetic excitations. In the same energy range, we have also identified the two-magnon excitation with a temperature dependence very similar to $alpha$-Fe$_2$O$_3$ hematite.
We investigate the temperature-dependent electronic structure of the van der Waals ferromagnet, CrGeTe$_3$. Using angle-resolved photoemission spectroscopy, we identify atomic- and orbital-specific band shifts upon cooling through ${T_mathrm{C}}$. From these, together with x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements, we identify the states created by a covalent bond between the Te ${5p}$ and the Cr ${e_g}$ orbitals as the primary driver of the ferromagnetic ordering in this system, while it is the Cr ${t_{2g}}$ states that carry the majority of the spin moment. The ${t_{2g}}$ states furthermore exhibit a marked bandwidth increase and a remarkable lifetime enhancement upon entering the ordered phase, pointing to a delicate interplay between localized and itinerant states in this family of layered ferromagnets.
Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO$_3$ in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortion of the canted antiferromagnetic state is induced by the single-ion magnetoelastic coupling between the lattice and the two nearly anti-parallel spins. The revised spin model for BiFeO$_3$ contains two new single-ion anisotropy terms that violate rhombohedral symmetry and depend on the direction of the magnetic field.
We have studied the magnetic field dependence of far-infrared active magnetic modes in a single ferroelectric domain BFO/ crystal at low temperature. The modes soften close to the critical field of 18.8,T along the [001] (pseudocubic) axis, where the cycloidal structure changes to the homogeneous canted antiferromagnetic state and a new strong mode with linear field dependence appears that persists at least up to 31,T. A microscopic model that includes two DM/ interactions and easy-axis anisotropy describes closely both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. The good agreement of theory with experiment suggests that the proposed model provides the foundation for future technological applications of this multiferroic material.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا