Do you want to publish a course? Click here

Large magnetoelectric coupling in nanoscale BiFeO$_3$ from direct electrical measurements

222   0   0.0 ( 0 )
 Added by Dipten Bhattacharya
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of direct measurement of remanent hysteresis loops on nanochains of BiFeO$_3$ at room temperature under zero and $sim$20 kOe magnetic field. We noticed a suppression of remanent polarization by nearly $sim$40% under the magnetic field. The powder neutron diffraction data reveal significant ion displacements under a magnetic field which seems to be the origin of the suppression of polarization. The isolated nanoparticles, comprising the chains, exhibit evolution of ferroelectric domains under dc electric field and complete 180$^o$ switching in switching-spectroscopy piezoresponse force microscopy. They also exhibit stronger ferromagnetism with nearly an order of magnitude higher saturation magnetization than that of the bulk sample. These results show that the nanoscale BiFeO$_3$ exhibits coexistence of ferroelectric and ferromagnetic order and a strong magnetoelectric multiferroic coupling at room temperature comparable to what some of the type-II multiferroics show at a very low temperature.



rate research

Read More

The spin-driven component of electric polarization in a single crystal of multiferroic BiFeO$_{3}$ was experimentally investigated in pulsed high magnetic fields up to 41 T. Sequential measurements of electric polarization for various magnetic field directions provide clear evidence of electric polarization normal to the hexagonal $c$ axis (${bf P}_{rm t}$) in not only the cycloidal phase, but also the field-induced canted antiferromagnetic phase. The direction of ${bf P}_{rm t}$ is directly coupled with the ferromagnetic moment in the canted antiferromagnetic phase, and thus controlled by changing the direction of the applied magnetic field. This magnetoelectric coupling is reasonably reproduced by the metal-ligand hybridization model.
422 - Yoon Seok Oh , S. Crane , H. Zheng 2010
The transverse and longitudinal magnetoelectric susceptibilities (MES) were quantitatively determined for (001) heteroepitaxial BiFeO$_{3}$-CoFe$_{2}$O$_{4}$ nanostructures. Both of these MES values were sharply enhanced at magnetic fields below 6 kOe and revealed asymmetric lineshapes with respect to the dc magnetic field, demonstrating the strain-induced magnetoelectric effect. The maximum transverse MES, which reached as high as $sim$60 mV/cm Oe, was about five times larger than the longitudinal MES. This observation signifies that transverse magnetostriction of the CoFe$_{2}$O$_{4}$ nanopillars is enhanced more than the bulk value due to preferred magnetic domain alignment along the [001] direction coming from compressive, heteroepitaxial strain.
We have performed Raman scattering investigations on the high energy magnetic excitations in a BiFeO$_3$ single crystal as a function of both temperature and laser excitation energy. A strong feature observed at 1250 cm$^{-1}$ in the Raman spectra has been previously assigned to two phonon overtone. We show here that its unusual frequency shift with the excitation energy and its asymmetric temperature dependent Fano lineshape reveal a strong coupling to magnetic excitations. In the same energy range, we have also identified the two-magnon excitation with a temperature dependence very similar to $alpha$-Fe$_2$O$_3$ hematite.
142 - A. Pimenov , A. Shuvaev , A. Loidl 2009
Magnetic and magnetoelectric excitations in the multiferroic TbMnO_3 have been investigated at terahertz frequencies. Using different experimental geometries we can clearly separate the electro-active excitations (electromagnons) from the magneto-active modes, i.e. antiferromagnetic resonances (AFMR). Two AFMR resonances were found to coincide with electromagnons. This indicates that both excitations belong to the same mode and the electromagnons can be excited by magnetic ac-field as well. In external magnetic fields and at low temperatures distinct fine structure of the electromagnons appears. In spite of the 90^o rotation of the magnetic structure, the electromagnons are observable for electric ac-fields parallel to the a-axis only. Contrary to simple expectations, the response along the c-axis remains purely magnetic in nature.
How the magnetoelectric coupling actually occurs on a microscopic level in multiferroic BiFeO3 is not well known. By using the high-resolution single crystal neutron diffraction techniques, we have determined the electric polarization of each individual elements of BiFeO3, and concluded that the magnetostrictive coupling suppresses the electric polarization at the Fe site below TN. This negative magnetoelectric coupling appears to outweigh the spin current contributions arising from the cycloid spin structure, which should produce a positive magnetoelectric coupling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا