No Arabic abstract
The goal of weakly-supervised video moment retrieval is to localize the video segment most relevant to the given natural language query without access to temporal annotations during training. Prior strongly- and weakly-supervised approaches often leverage co-attention mechanisms to learn visual-semantic representations for localization. However, while such approaches tend to focus on identifying relationships between elements of the video and language modalities, there is less emphasis on modeling relational context between video frames given the semantic context of the query. Consequently, the above-mentioned visual-semantic representations, built upon local frame features, do not contain much contextual information. To address this limitation, we propose a Latent Graph Co-Attention Network (LoGAN) that exploits fine-grained frame-by-word interactions to reason about correspondences between all possible pairs of frames, given the semantic context of the query. Comprehensive experiments across two datasets, DiDeMo and Charades-Sta, demonstrate the effectiveness of our proposed latent co-attention model where it outperforms current state-of-the-art (SOTA) weakly-supervised approaches by a significant margin. Notably, it even achieves a 11% improvement to Recall@1 accuracy over strongly-supervised SOTA methods on DiDeMo.
Weakly supervised semantic segmentation is receiving great attention due to its low human annotation cost. In this paper, we aim to tackle bounding box supervised semantic segmentation, i.e., training accurate semantic segmentation models using bounding box annotations as supervision. To this end, we propose Affinity Attention Graph Neural Network ($A^2$GNN). Following previous practices, we first generate pseudo semantic-aware seeds, which are then formed into semantic graphs based on our newly proposed affinity Convolutional Neural Network (CNN). Then the built graphs are input to our $A^2$GNN, in which an affinity attention layer is designed to acquire the short- and long- distance information from soft graph edges to accurately propagate semantic labels from the confident seeds to the unlabeled pixels. However, to guarantee the precision of the seeds, we only adopt a limited number of confident pixel seed labels for $A^2$GNN, which may lead to insufficient supervision for training. To alleviate this issue, we further introduce a new loss function and a consistency-checking mechanism to leverage the bounding box constraint, so that more reliable guidance can be included for the model optimization. Experiments show that our approach achieves new state-of-the-art performances on Pascal VOC 2012 datasets (val: 76.5%, test: 75.2%). More importantly, our approach can be readily applied to bounding box supervised instance segmentation task or other weakly supervised semantic segmentation tasks, with state-of-the-art or comparable performance among almot all weakly supervised tasks on PASCAL VOC or COCO dataset. Our source code will be available at https://github.com/zbf1991/A2GNN.
Content-based video retrieval aims to find videos from a large video database that are similar to or even near-duplicate of a given query video. Video representation and similarity search algorithms are crucial to any video retrieval system. To derive effective video representation, most video retrieval systems require a large amount of manually annotated data for training, making it costly inefficient. In addition, most retrieval systems are based on frame-level features for video similarity searching, making it expensive both storage wise and search wise. We propose a novel video retrieval system, termed SVRTN, that effectively addresses the above shortcomings. It first applies self-supervised training to effectively learn video representation from unlabeled data to avoid the expensive cost of manual annotation. Then, it exploits transformer structure to aggregate frame-level features into clip-level to reduce both storage space and search complexity. It can learn the complementary and discriminative information from the interactions among clip frames, as well as acquire the frame permutation and missing invariant ability to support more flexible retrieval manners. Comprehensive experiments on two challenging video retrieval datasets, namely FIVR-200K and SVD, verify the effectiveness of our proposed SVRTN method, which achieves the best performance of video retrieval on accuracy and efficiency.
During the first wave of COVID-19, hospitals were overwhelmed with the high number of admitted patients. An accurate prediction of the most likely individual disease progression can improve the planning of limited resources and finding the optimal treatment for patients. However, when dealing with a newly emerging disease such as COVID-19, the impact of patient- and disease-specific factors (e.g. body weight or known co-morbidities) on the immediate course of disease is by and large unknown. In the case of COVID-19, the need for intensive care unit (ICU) admission of pneumonia patients is often determined only by acute indicators such as vital signs (e.g. breathing rate, blood oxygen levels), whereas statistical analysis and decision support systems that integrate all of the available data could enable an earlier prognosis. To this end, we propose a holistic graph-based approach combining both imaging and non-imaging information. Specifically, we introduce a multimodal similarity metric to build a population graph for clustering patients and an image-based end-to-end Graph Attention Network to process this graph and predict the COVID-19 patient outcomes: admission to ICU, need for ventilation and mortality. Additionally, the network segments chest CT images as an auxiliary task and extracts image features and radiomics for feature fusion with the available metadata. Results on a dataset collected in Klinikum rechts der Isar in Munich, Germany show that our approach outperforms single modality and non-graph baselines. Moreover, our clustering and graph attention allow for increased understanding of the patient relationships within the population graph and provide insight into the networks decision-making process.
Cervical cancer is the second most prevalent cancer affecting women today. As the early detection of cervical carcinoma relies heavily upon screening and pre-clinical testing, digital cervicography has great potential as a primary or auxiliary screening tool, especially in low-resource regions due to its low cost and easy access. Although an automated cervical dysplasia detection system has been desirable, traditional fully-supervised training of such systems requires large amounts of annotated data which are often labor-intensive to collect. To alleviate the need for much manual annotation, we propose a novel graph convolutional network (GCN) based semi-supervised classification model that can be trained with fewer annotations. In existing GCNs, graphs are constructed with fixed features and can not be updated during the learning process. This limits their ability to exploit new features learned during graph convolution. In this paper, we propose a novel and more flexible GCN model with a feature encoder that adaptively updates the adjacency matrix during learning and demonstrate that this model design leads to improved performance. Our experimental results on a cervical dysplasia classification dataset show that the proposed framework outperforms previous methods under a semi-supervised setting, especially when the labeled samples are scarce.
Weakly Supervised Object Detection (WSOD) has emerged as an effective tool to train object detectors using only the image-level category labels. However, without object-level labels, WSOD detectors are prone to detect bounding boxes on salient objects, clustered objects and discriminative object parts. Moreover, the image-level category labels do not enforce consistent object detection across different transformations of the same images. To address the above issues, we propose a Comprehensive Attention Self-Distillation (CASD) training approach for WSOD. To balance feature learning among all object instances, CASD computes the comprehensive attention aggregated from multiple transformations and feature layers of the same images. To enforce consistent spatial supervision on objects, CASD conducts self-distillation on the WSOD networks, such that the comprehensive attention is approximated simultaneously by multiple transformations and feature layers of the same images. CASD produces new state-of-the-art WSOD results on standard benchmarks such as PASCAL VOC 2007/2012 and MS-COCO.