Do you want to publish a course? Click here

Comprehensive Attention Self-Distillation for Weakly-Supervised Object Detection

308   0   0.0 ( 0 )
 Added by Dong Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Weakly Supervised Object Detection (WSOD) has emerged as an effective tool to train object detectors using only the image-level category labels. However, without object-level labels, WSOD detectors are prone to detect bounding boxes on salient objects, clustered objects and discriminative object parts. Moreover, the image-level category labels do not enforce consistent object detection across different transformations of the same images. To address the above issues, we propose a Comprehensive Attention Self-Distillation (CASD) training approach for WSOD. To balance feature learning among all object instances, CASD computes the comprehensive attention aggregated from multiple transformations and feature layers of the same images. To enforce consistent spatial supervision on objects, CASD conducts self-distillation on the WSOD networks, such that the comprehensive attention is approximated simultaneously by multiple transformations and feature layers of the same images. CASD produces new state-of-the-art WSOD results on standard benchmarks such as PASCAL VOC 2007/2012 and MS-COCO.



rate research

Read More

Although recent advances in deep learning accelerated an improvement in a weakly supervised object localization (WSOL) task, there are still challenges to identify the entire body of an object, rather than only discriminative parts. In this paper, we propose a novel residual fine-grained attention (RFGA) module that autonomously excites the less activated regions of an object by utilizing information distributed over channels and locations within feature maps in combination with a residual operation. To be specific, we devise a series of mechanisms of triple-view attention representation, attention expansion, and feature calibration. Unlike other attention-based WSOL methods that learn a coarse attention map, having the same values across elements in feature maps, our proposed RFGA learns fine-grained values in an attention map by assigning different attention values for each of the elements. We validated the superiority of our proposed RFGA module by comparing it with the recent methods in the literature over three datasets. Further, we analyzed the effect of each mechanism in our RFGA and visualized attention maps to get insights.
In this paper, we propose an effective knowledge transfer framework to boost the weakly supervised object detection accuracy with the help of an external fully-annotated source dataset, whose categories may not overlap with the target domain. This setting is of great practical value due to the existence of many off-the-shelf detection datasets. To more effectively utilize the source dataset, we propose to iteratively transfer the knowledge from the source domain by a one-class universal detector and learn the target-domain detector. The box-level pseudo ground truths mined by the target-domain detector in each iteration effectively improve the one-class universal detector. Therefore, the knowledge in the source dataset is more thoroughly exploited and leveraged. Extensive experiments are conducted with Pascal VOC 2007 as the target weakly-annotated dataset and COCO/ImageNet as the source fully-annotated dataset. With the proposed solution, we achieved an mAP of $59.7%$ detection performance on the VOC test set and an mAP of $60.2%$ after retraining a fully supervised Faster RCNN with the mined pseudo ground truths. This is significantly better than any previously known results in related literature and sets a new state-of-the-art of weakly supervised object detection under the knowledge transfer setting. Code: url{https://github.com/mikuhatsune/wsod_transfer}.
Weakly Supervised Object Localization (WSOL) techniques learn the object location only using image-level labels, without location annotations. A common limitation for these techniques is that they cover only the most discriminative part of the object, not the entire object. To address this problem, we propose an Attention-based Dropout Layer (ADL), which utilizes the self-attention mechanism to process the feature maps of the model. The proposed method is composed of two key components: 1) hiding the most discriminative part from the model for capturing the integral extent of object, and 2) highlighting the informative region for improving the recognition power of the model. Based on extensive experiments, we demonstrate that the proposed method is effective to improve the accuracy of WSOL, achieving a new state-of-the-art localization accuracy in CUB-200-2011 dataset. We also show that the proposed method is much more efficient in terms of both parameter and computation overheads than existing techniques.
The research on recognizing the most discriminative regions provides referential information for weakly supervised object localization with only image-level annotations. However, the most discriminative regions usually conceal the other parts of the object, thereby impeding entire object recognition and localization. To tackle this problem, the Dual-attention Focused Module (DFM) is proposed to enhance object localization performance. Specifically, we present a dual attention module for information fusion, consisting of a position branch and a channel one. In each branch, the input feature map is deduced into an enhancement map and a mask map, thereby highlighting the most discriminative parts or hiding them. For the position mask map, we introduce a focused matrix to enhance it, which utilizes the principle that the pixels of an object are continuous. Between these two branches, the enhancement map is integrated with the mask map, aiming at partially compensating the lost information and diversifies the features. With the dual-attention module and focused matrix, the entire object region could be precisely recognized with implicit information. We demonstrate outperforming results of DFM in experiments. In particular, DFM achieves state-of-the-art performance in localization accuracy in ILSVRC 2016 and CUB-200-2011.
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations. Despite of the success of previous works, explorations on an effective training strategy for the saliency network and accurate matches between image-level annotations and salient objects are still inadequate. In this work, 1) we propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions, liberating the saliency network from error-prone propagation caused by pseudo labels. 2) we prove that even a much smaller dataset (merely 1.8% of ImageNet) with well-matched annotations can facilitate models to achieve better performance as well as generalizability. This sheds new light on the development of WSOD and encourages more contributions to the community. Comprehensive experiments demonstrate that our method outperforms all the existing WSOD methods by adopting the self-calibrated strategy only. Steady improvements are further achieved by training on the proposed dataset. Additionally, our method achieves 94.7% of the performance of fully-supervised methods on average. And what is more, the fully supervised models adopting our predicted results as ground truths achieve successful results (95.6% for BASNet and 97.3% for ITSD on F-measure), while costing only 0.32% of labeling time for pixel-level annotation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا