Do you want to publish a course? Click here

Self-supervised Video Retrieval Transformer Network

255   0   0.0 ( 0 )
 Added by Xiangteng He
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Content-based video retrieval aims to find videos from a large video database that are similar to or even near-duplicate of a given query video. Video representation and similarity search algorithms are crucial to any video retrieval system. To derive effective video representation, most video retrieval systems require a large amount of manually annotated data for training, making it costly inefficient. In addition, most retrieval systems are based on frame-level features for video similarity searching, making it expensive both storage wise and search wise. We propose a novel video retrieval system, termed SVRTN, that effectively addresses the above shortcomings. It first applies self-supervised training to effectively learn video representation from unlabeled data to avoid the expensive cost of manual annotation. Then, it exploits transformer structure to aggregate frame-level features into clip-level to reduce both storage space and search complexity. It can learn the complementary and discriminative information from the interactions among clip frames, as well as acquire the frame permutation and missing invariant ability to support more flexible retrieval manners. Comprehensive experiments on two challenging video retrieval datasets, namely FIVR-200K and SVD, verify the effectiveness of our proposed SVRTN method, which achieves the best performance of video retrieval on accuracy and efficiency.



rate research

Read More

This paper presents VTN, a transformer-based framework for video recognition. Inspired by recent developments in vision transformers, we ditch the standard approach in video action recognition that relies on 3D ConvNets and introduce a method that classifies actions by attending to the entire video sequence information. Our approach is generic and builds on top of any given 2D spatial network. In terms of wall runtime, it trains $16.1times$ faster and runs $5.1times$ faster during inference while maintaining competitive accuracy compared to other state-of-the-art methods. It enables whole video analysis, via a single end-to-end pass, while requiring $1.5times$ fewer GFLOPs. We report competitive results on Kinetics-400 and present an ablation study of VTN properties and the trade-off between accuracy and inference speed. We hope our approach will serve as a new baseline and start a fresh line of research in the video recognition domain. Code and models are available at: https://github.com/bomri/SlowFast/blob/master/projects/vtn/README.md
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: https://github.com/Sara-Ahmed/SiT.
The goal of weakly-supervised video moment retrieval is to localize the video segment most relevant to the given natural language query without access to temporal annotations during training. Prior strongly- and weakly-supervised approaches often leverage co-attention mechanisms to learn visual-semantic representations for localization. However, while such approaches tend to focus on identifying relationships between elements of the video and language modalities, there is less emphasis on modeling relational context between video frames given the semantic context of the query. Consequently, the above-mentioned visual-semantic representations, built upon local frame features, do not contain much contextual information. To address this limitation, we propose a Latent Graph Co-Attention Network (LoGAN) that exploits fine-grained frame-by-word interactions to reason about correspondences between all possible pairs of frames, given the semantic context of the query. Comprehensive experiments across two datasets, DiDeMo and Charades-Sta, demonstrate the effectiveness of our proposed latent co-attention model where it outperforms current state-of-the-art (SOTA) weakly-supervised approaches by a significant margin. Notably, it even achieves a 11% improvement to Recall@1 accuracy over strongly-supervised SOTA methods on DiDeMo.
Transformer has been widely used for self-supervised pre-training in Natural Language Processing (NLP) and achieved great success. However, it has not been fully explored in visual self-supervised learning. Meanwhile, previous methods only consider the high-level feature and learning representation from a global perspective, which may fail to transfer to the downstream dense prediction tasks focusing on local features. In this paper, we present a novel Masked Self-supervised Transformer approach named MST, which can explicitly capture the local context of an image while preserving the global semantic information. Specifically, inspired by the Masked Language Modeling (MLM) in NLP, we propose a masked token strategy based on the multi-head self-attention map, which dynamically masks some tokens of local patches without damaging the crucial structure for self-supervised learning. More importantly, the masked tokens together with the remaining tokens are further recovered by a global image decoder, which preserves the spatial information of the image and is more friendly to the downstream dense prediction tasks. The experiments on multiple datasets demonstrate the effectiveness and generality of the proposed method. For instance, MST achieves Top-1 accuracy of 76.9% with DeiT-S only using 300-epoch pre-training by linear evaluation, which outperforms supervised methods with the same epoch by 0.4% and its comparable variant DINO by 1.0%. For dense prediction tasks, MST also achieves 42.7% mAP on MS COCO object detection and 74.04% mIoU on Cityscapes segmentation only with 100-epoch pre-training.
Existing unsupervised video-to-video translation methods fail to produce translated videos which are frame-wise realistic, semantic information preserving and video-level consistent. In this work, we propose UVIT, a novel unsupervised video-to-video translation model. Our model decomposes the style and the content, uses the specialized encoder-decoder structure and propagates the inter-frame information through bidirectional recurrent neural network (RNN) units. The style-content decomposition mechanism enables us to achieve style consistent video translation results as well as provides us with a good interface for modality flexible translation. In addition, by changing the input frames and style codes incorporated in our translation, we propose a video interpolation loss, which captures temporal information within the sequence to train our building blocks in a self-supervised manner. Our model can produce photo-realistic, spatio-temporal consistent translated videos in a multimodal way. Subjective and objective experimental results validate the superiority of our model over existing methods. More details can be found on our project website: https://uvit.netlify.com
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا