No Arabic abstract
We analyze, analytically and numerically, the position, momentum, and in particular the angular-momentum variance of a Bose-Einstein condensate (BEC) trapped in a two-dimensional anisotropic trap for static and dynamic scenarios. The differences between the variances at the mean-field level, which are attributed to the shape of the BEC, and the variances at the many-body level, which incorporate depletion, are used to characterize position, momentum, and angular-momentum correlations in the BEC for finite systems and at the limit of an infinite number of particles where the bosons are $100%$ condensed. Finally, we also explore inter-connections between the variances.
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposite when computed at the many-body and mean-field levels of theory. This is despite the system being $100%$ condensed, and the respective energies per particle and densities per particle to coincide.
By applying a position-dependent detuning to a spin-orbit-coupled Hamiltonian with equal Rashba and Dresselhaus coupling, we exploit the behavior of the angular momentum of a harmonically trapped Bose-Einstein condensed atomic gas and discuss the distinctive role of its canonical and spin components. By developing the formalism of spinor hydrodynamics we predict the precession of the dipole oscillation caused by the synthetic rotational field, in analogy with the precession of the Foucault pendulum, the excitation of the scissors mode, following the sudden switching off of the detuning, and the occurrence of Hall-like effects. When the detuning exceeds a critical value we observe a transition from a vortex free, rigidly rotating quantum gas to a gas containing vortices with negative circulation which results in a significant reduction of the total angular momentum.
The variance of the position operator is associated with how wide or narrow a wave-packet is, the momentum variance is similarly correlated with the size of a wave-packet in momentum space, and the angular-momentum variance quantifies to what extent a wave-packet is non-spherically symmetric. We examine an interacting three-dimensional trapped Bose-Einstein condensate at the limit of an infinite number of particles, and investigate its position, momentum, and angular-momentum anisotropies. Computing the variances of the three Cartesian components of the position, momentum, and angular-momentum operators we present simple scenarios where the anisotropy of a Bose-Einstein condensate is different at the many-body and mean-field levels of theory, despite having the same many-body and mean-field densities per particle. This suggests a way to classify correlations via the morphology of 100% condensed bosons in a three-dimensional trap at the limit of an infinite number of particles. Implications are briefly discussed.
Recently, stripe phases in spin-orbit coupled Bose-Einstein condensates (BECs) have attracted much attention since they are identified as supersolid phases. In this paper, we exploit experimentally reachable parameters and show theoretically that annular stripe phases with large stripe spacing and high stripe contrast can be achieved in spin-orbital-angular-momentum coupled (SOAMC) BECs. In addition to using Gross-Pitaevskii numerical simulations, we develop a variational ansatz that captures the essential interaction effects to first order, which are not present in the ansatz employed in previous literature. Our work should open the possibility toward directly observing stripe phases in SOAMC BECs in experiments.
We investigate the collective excitations of a Raman-induced spin-orbit coupled Bose-Einstein condensate confined in a quasi one-dimension harmonic trap using the Bogoliubov method. By tuning the Raman coupling strength, three phases of the system can be identified. By calculating the transition strength, we are able to classify various excitation modes that are experimentally relevant. We show that the three quantum phases possess distinct features in their collective excitation properties. In particular, the spin dipole and the spin breathing modes can be used to clearly map out the phase boundaries. We confirm these predictions by direct numerical simulations of the quench dynamics that excites the relevant collective modes.