Do you want to publish a course? Click here

Angular Momentum of a Bose-Einstein Condensate in a Synthetic Rotational Field

70   0   0.0 ( 0 )
 Added by Chunlei Qu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

By applying a position-dependent detuning to a spin-orbit-coupled Hamiltonian with equal Rashba and Dresselhaus coupling, we exploit the behavior of the angular momentum of a harmonically trapped Bose-Einstein condensed atomic gas and discuss the distinctive role of its canonical and spin components. By developing the formalism of spinor hydrodynamics we predict the precession of the dipole oscillation caused by the synthetic rotational field, in analogy with the precession of the Foucault pendulum, the excitation of the scissors mode, following the sudden switching off of the detuning, and the occurrence of Hall-like effects. When the detuning exceeds a critical value we observe a transition from a vortex free, rigidly rotating quantum gas to a gas containing vortices with negative circulation which results in a significant reduction of the total angular momentum.



rate research

Read More

175 - Ofir E. Alon 2019
We analyze, analytically and numerically, the position, momentum, and in particular the angular-momentum variance of a Bose-Einstein condensate (BEC) trapped in a two-dimensional anisotropic trap for static and dynamic scenarios. The differences between the variances at the mean-field level, which are attributed to the shape of the BEC, and the variances at the many-body level, which incorporate depletion, are used to characterize position, momentum, and angular-momentum correlations in the BEC for finite systems and at the limit of an infinite number of particles where the bosons are $100%$ condensed. Finally, we also explore inter-connections between the variances.
We report the experimental implementation of discrete-time topological quantum walks of a Bose-Einstein condensate in momentum space. Introducing stroboscopic driving sequences to the generation of a momentum lattice, we show that the dynamics of atoms along the lattice is effectively governed by a periodically driven Su-Schrieffer-Heeger model, which is equivalent to a discrete-time topological quantum walk. We directly measure the underlying topological invariants through time-averaged mean chiral displacements, which are consistent with our experimental observation of topological phase transitions. We then observe interaction-induced localization in the quantum-walk dynamics, where atoms tend to populate a single momentum-lattice site under interactions that are non-local in momentum space. Our experiment opens up the avenue of investigating discrete-time topological quantum walks using cold atoms, where the many-body environment and tunable interactions offer exciting new possibilities.
142 - Jie Sun , Yuanyuan Chen , Xi Chen 2020
Synthetic spin-tensor-momentum coupling has recently been proposed to realize in atomic Bose-Einstein condensates. Here we study bright solitons in Bose-Einstein condensates with spin-tensor-momentum coupling and spin-orbit coupling. The properties and dynamics of spin-tensor-momentum-coupled and spin-orbit-coupled bright solitons are identified to be different. We contribute the difference to the different symmetries.
Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscillations in the condensate, and we derive using field theory an effective Schrodinger equation describing this for arbitrarily strong impurity-boson interaction. We furthermore compare with Quantum Monte Carlo simulations finding remarkable agreement, which underlines the predictive power of the developed theory. It is found that bipolaron formation typically requires strong impurity interactions beyond the validity of more commonly used weak-coupling approaches that lead to local Yukawa-type interactions. We predict that the bipolarons are observable in present experiments and describe a procedure to probe their properties.
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition of length scales gives rise to a highly correlated mesoscopic state. Using quantum Monte Carlo simulations, we unravel its vastly different polaronic properties compared to neutral quantum impurities. Moreover, we identify a transition between the regime amenable to conventional perturbative treatment in the limit of weak atom-ion interactions and a many-body bound state with vanishing quasi-particle residue composed of hundreds of atoms. In order to analyze the structure of the corresponding states we examine the atom-ion and atom-atom correlation functions which both show nontrivial properties. Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا