No Arabic abstract
The variance of the position operator is associated with how wide or narrow a wave-packet is, the momentum variance is similarly correlated with the size of a wave-packet in momentum space, and the angular-momentum variance quantifies to what extent a wave-packet is non-spherically symmetric. We examine an interacting three-dimensional trapped Bose-Einstein condensate at the limit of an infinite number of particles, and investigate its position, momentum, and angular-momentum anisotropies. Computing the variances of the three Cartesian components of the position, momentum, and angular-momentum operators we present simple scenarios where the anisotropy of a Bose-Einstein condensate is different at the many-body and mean-field levels of theory, despite having the same many-body and mean-field densities per particle. This suggests a way to classify correlations via the morphology of 100% condensed bosons in a three-dimensional trap at the limit of an infinite number of particles. Implications are briefly discussed.
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposite when computed at the many-body and mean-field levels of theory. This is despite the system being $100%$ condensed, and the respective energies per particle and densities per particle to coincide.
We analyze, analytically and numerically, the position, momentum, and in particular the angular-momentum variance of a Bose-Einstein condensate (BEC) trapped in a two-dimensional anisotropic trap for static and dynamic scenarios. The differences between the variances at the mean-field level, which are attributed to the shape of the BEC, and the variances at the many-body level, which incorporate depletion, are used to characterize position, momentum, and angular-momentum correlations in the BEC for finite systems and at the limit of an infinite number of particles where the bosons are $100%$ condensed. Finally, we also explore inter-connections between the variances.
We observe the coherence of an interacting two-component Bose-Einstein condensate (BEC) surviving for seconds in a trapped Ramsey interferometer. Mean-field driven collective oscillations of two components lead to periodic dephasing and rephasing of condensate wave functions with a slow decay of the interference fringe visibility. We apply spin echo synchronous with the self-rephasing of the condensate to reduce the influence of state-dependent atom losses, significantly enhancing the visibility up to 0.75 at the evolution time of 1.5s. Mean-field theory consistently predicts higher visibility than experimentally observed values. We quantify the effects of classical and quantum noise and infer a coherence time of 2.8 s for a trapped condensate of 5.5e4 interacting atoms.
The excitation spectrum of a highly-condensed two-dimensional trapped Bose-Einstein condensate (BEC) is investigated within the rotating frame of reference. The rotation is used to transfer high-lying excited states to the low-energy spectrum of the BEC. We employ many-body linear-response theory and show that, once the rotation leads to a quantized vortex in the ground state, already the low-energy part of the excitation spectrum shows substantial many-body effects beyond the realm of mean-field theory. We demonstrate numerically that the many-body effects grow with the vorticity of the ground state, meaning that the rotation enhances them even for very weak repulsion. Furthermore, we explore the impact of the number of bosons $N$ in the condensate on a low-lying single-particle excitation, which is describable within mean-field theory. Our analysis shows deviations between the many-body and mean-field results which clearly persist when $N$ is increased up to the experimentally relevant regime, typically ranging from several thousand up to a million bosons in size. Implications are briefly discussed.
We investigate the collective excitations of a Raman-induced spin-orbit coupled Bose-Einstein condensate confined in a quasi one-dimension harmonic trap using the Bogoliubov method. By tuning the Raman coupling strength, three phases of the system can be identified. By calculating the transition strength, we are able to classify various excitation modes that are experimentally relevant. We show that the three quantum phases possess distinct features in their collective excitation properties. In particular, the spin dipole and the spin breathing modes can be used to clearly map out the phase boundaries. We confirm these predictions by direct numerical simulations of the quench dynamics that excites the relevant collective modes.