Do you want to publish a course? Click here

The telescope conjecture at height 2 and the tmf resolution

128   0   0.0 ( 0 )
 Added by Mark Behrens
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Mahowald proved the height 1 telescope conjecture at the prime 2 as an application of his seminal work on bo-resolutions. In this paper we study the height 2 telescope conjecture at the prime 2 through the lens of tmf-resolutions. To this end we compute the structure of the tmf-resolution for a specifc type 2 complex Z. We find that, analogous to the height 1 case, the E1-page of the tmf-resolution possesses a decomposition into a v2-periodic summand, and an Eilenberg-MacLane summand which consists of bounded v2-torsion. However, unlike the height 1 case, the E2-page of the tmf-resolution exhibits unbounded v2-torsion. We compare this to the work of Mahowald-Ravenel-Shick, and discuss how the validity of the telescope conjecture is connected to the fate of this unbounded v2-torsion: either the unbounded v2-torsion kills itself off in the spectral sequence, and the telescope conjecture is true, or it persists to form v2-parabolas and the telescope conjecture is false. We also study how to use the tmf-resolution to effectively give low dimensional computations of the homotopy groups of Z. These computations allow us to prove a conjecture of the second author and Egger: the E(2)-local Adams-Novikov spectral sequence for Z collapses.



rate research

Read More

We determine the image of the 2-primary tmf-Hurewicz homomorphism, where tmf is the spectrum of topological modular forms. We do this by lifting elements of tmf_* to the homotopy groups of the generalized Moore spectrum M(8,v_1^8) using a modified form of the Adams spectral sequence and the tmf-resolution, and then proving the existence of a v_2^32-self map on M(8,v_1^8) to generate 192-periodic families in the stable homotopy groups of spheres.
404 - Charles Rezk 2008
Explicit calculations of the algebraic theory of power operations for a specific Morava E-theory spectrum are given, without detailed proofs.
136 - Tilman Bauer 2003
This paper contains a complete computation of the homotopy ring of the spectrum of topological modular forms constructed by Hopkins and Miller. The computation is done away from 6, and at the (interesting) primes 2 and 3 separately, and in each of the latter two cases, a sequence of algebraic Bockstein spectral sequences is used to compute the E_2 term of the elliptic Adams-Novikov spectral sequence from the elliptic curve Hopf algebroid. In a further step, all the differentials in the latter spectral sequence are determined. The result of this computation is originally due to Hopkins and Mahowald (unpublished).
We explore an approach to twisted generalized cohomology from the point of view of stable homotopy theory and quasicategory theory provided by arXiv:0810.4535. We explain the relationship to the twisted K-theory provided by Fredholm bundles. We show how our approach allows us to twist elliptic cohomology by degree four classes, and more generally by maps to the four-stage Postnikov system BO<0...4>. We also discuss Poincare duality and umkehr maps in this setting.
88 - J.D. Quigley 2019
The $2$-primary homotopy $beta$-family, defined as the collection of Mahowald invariants of Mahowald invariants of $2^i$, $i geq 1$, is an infinite collection of periodic elements in the stable homotopy groups of spheres. In this paper, we calculate $mathit{tmf}$-based approximations to this family. Our calculations combine an analysis of the Atiyah-Hirzebruch spectral sequence for the Tate construction of $mathit{tmf}$ with trivial $C_2$-action and Behrens filtered Mahowald invariant machinery.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا