We construct and study an algebraic theory which closely approximates the theory of power operations for Morava E-theory, extending previous work of Charles Rezk in a way that takes completions into account. These algebraic structures are made explicit in the case of K-theory. Methodologically, we emphasize the utility of flat modules in this context, and prove a general version of Lazards flatness criterion for module spectra over associative ring spectra.
The dual Steenrod algebra has a canonical subalgebra isomorphic to the homology of the Brown-Peterson spectrum. We will construct a secondary operation in mod-2 homology and show that this canonical subalgebra is not closed under it. This allows us to conclude that the 2-primary Brown-Peterson spectrum does not admit the structure of an E_n-algebra for any n greater than or equal to 12, answering a question of May in the negative.
Mahowald proved the height 1 telescope conjecture at the prime 2 as an application of his seminal work on bo-resolutions. In this paper we study the height 2 telescope conjecture at the prime 2 through the lens of tmf-resolutions. To this end we compute the structure of the tmf-resolution for a specifc type 2 complex Z. We find that, analogous to the height 1 case, the E1-page of the tmf-resolution possesses a decomposition into a v2-periodic summand, and an Eilenberg-MacLane summand which consists of bounded v2-torsion. However, unlike the height 1 case, the E2-page of the tmf-resolution exhibits unbounded v2-torsion. We compare this to the work of Mahowald-Ravenel-Shick, and discuss how the validity of the telescope conjecture is connected to the fate of this unbounded v2-torsion: either the unbounded v2-torsion kills itself off in the spectral sequence, and the telescope conjecture is true, or it persists to form v2-parabolas and the telescope conjecture is false. We also study how to use the tmf-resolution to effectively give low dimensional computations of the homotopy groups of Z. These computations allow us to prove a conjecture of the second author and Egger: the E(2)-local Adams-Novikov spectral sequence for Z collapses.
In this note, we compute the image of the $alpha$-family in the homotopy of the $K(2)$-local sphere at the prime $p=2$ by locating its image in the algebraic duality spectral sequence. This is a stepping stone for the computation of the homotopy groups of the $K(2)$-local sphere at the prime $2$ using the duality spectral sequences.