Do you want to publish a course? Click here

$mathit{tmf}$-based Mahowald invariants

89   0   0.0 ( 0 )
 Added by J.D. Quigley
 Publication date 2019
  fields
and research's language is English
 Authors J.D. Quigley




Ask ChatGPT about the research

The $2$-primary homotopy $beta$-family, defined as the collection of Mahowald invariants of Mahowald invariants of $2^i$, $i geq 1$, is an infinite collection of periodic elements in the stable homotopy groups of spheres. In this paper, we calculate $mathit{tmf}$-based approximations to this family. Our calculations combine an analysis of the Atiyah-Hirzebruch spectral sequence for the Tate construction of $mathit{tmf}$ with trivial $C_2$-action and Behrens filtered Mahowald invariant machinery.



rate research

Read More

104 - J.D. Quigley 2019
We generalize the Mahowald invariant to the $mathbb{R}$-motivic and $C_2$-equivariant settings. For all $i>0$ with $i equiv 2,3 mod 4$, we show that the $mathbb{R}$-motivic Mahowald invariant of $(2+rho eta)^i in pi_{0,0}^{mathbb{R}}(S^{0,0})$ contains a lift of a certain element in Adams classical $v_1$-periodic families, and for all $i > 0$, we show that the $mathbb{R}$-motivic Mahowald invariant of $eta^i in pi_{i,i}^{mathbb{R}}(S^{0,0})$ contains a lift of a certain element in Andrews $mathbb{C}$-motivic $w_1$-periodic families. We prove analogous results about the $C_2$-equivariant Mahowald invariants of $(2+rho eta)^i in pi_{0,0}^{C_2}(S^{0,0})$ and $eta^i in pi_{i,i}^{C_2}(S^{0,0})$ by leveraging connections between the classical, motivic, and equivariant stable homotopy categories. The infinite families we construct are some of the first periodic families of their kind studied in the $mathbb{R}$-motivic and $C_2$-equivariant settings.
141 - J.D. Quigley 2019
The motivic Mahowald invariant was introduced in cite{Qui19a} and cite{Qui19b} to study periodicity in the $mathbb{C}$- and $mathbb{R}$-motivic stable stems. In this paper, we define the motivic Mahowald invariant over any field $F$ of characteristic not two and use it to study periodicity in the $F$-motivic stable stems. In particular, we construct lifts of some of Adams classical $v_1$-periodic families cite{Ada66} and identify them as the motivic Mahowald invariants of powers of $2+rho eta$.
We explore an approach to twisted generalized cohomology from the point of view of stable homotopy theory and quasicategory theory provided by arXiv:0810.4535. We explain the relationship to the twisted K-theory provided by Fredholm bundles. We show how our approach allows us to twist elliptic cohomology by degree four classes, and more generally by maps to the four-stage Postnikov system BO<0...4>. We also discuss Poincare duality and umkehr maps in this setting.
We determine the image of the 2-primary tmf-Hurewicz homomorphism, where tmf is the spectrum of topological modular forms. We do this by lifting elements of tmf_* to the homotopy groups of the generalized Moore spectrum M(8,v_1^8) using a modified form of the Adams spectral sequence and the tmf-resolution, and then proving the existence of a v_2^32-self map on M(8,v_1^8) to generate 192-periodic families in the stable homotopy groups of spheres.
136 - Tilman Bauer 2003
This paper contains a complete computation of the homotopy ring of the spectrum of topological modular forms constructed by Hopkins and Miller. The computation is done away from 6, and at the (interesting) primes 2 and 3 separately, and in each of the latter two cases, a sequence of algebraic Bockstein spectral sequences is used to compute the E_2 term of the elliptic Adams-Novikov spectral sequence from the elliptic curve Hopf algebroid. In a further step, all the differentials in the latter spectral sequence are determined. The result of this computation is originally due to Hopkins and Mahowald (unpublished).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا