No Arabic abstract
This paper contains a complete computation of the homotopy ring of the spectrum of topological modular forms constructed by Hopkins and Miller. The computation is done away from 6, and at the (interesting) primes 2 and 3 separately, and in each of the latter two cases, a sequence of algebraic Bockstein spectral sequences is used to compute the E_2 term of the elliptic Adams-Novikov spectral sequence from the elliptic curve Hopf algebroid. In a further step, all the differentials in the latter spectral sequence are determined. The result of this computation is originally due to Hopkins and Mahowald (unpublished).
We compute the homotopy groups of the {eta}-periodic motivic sphere spectrum over a finite-dimensional field k with characteristic not 2 and in which -1 a sum of four squares. We also study the general characteristic 0 case and show that the {eta}-periodic slice spectral sequence over Q determines the {eta}-periodic slice spectral sequence over all extensions of Q. This leads to a speculation on the role of a connective Witt-theoretic J-spectrum in {eta}-periodic motivic homotopy theory.
We determine the image of the 2-primary tmf-Hurewicz homomorphism, where tmf is the spectrum of topological modular forms. We do this by lifting elements of tmf_* to the homotopy groups of the generalized Moore spectrum M(8,v_1^8) using a modified form of the Adams spectral sequence and the tmf-resolution, and then proving the existence of a v_2^32-self map on M(8,v_1^8) to generate 192-periodic families in the stable homotopy groups of spheres.
In this paper we use the approach introduced in an earlier paper by Goerss, Henn, Mahowald and Rezk in order to analyze the homotopy groups of L_{K(2)}V(0), the mod-3 Moore spectrum V(0) localized with respect to Morava K-theory K(2). These homotopy groups have already been calculated by Shimomura. The results are very complicated so that an independent verification via an alternative approach is of interest. In fact, we end up with a result which is more precise and also differs in some of its details from that of Shimomura. An additional bonus of our approach is that it breaks up the result into smaller and more digestible chunks which are related to the K(2)-localization of the spectrum TMF of topological modular forms and related spectra. Even more, the Adams-Novikov differentials for L_{K(2)}V(0) can be read off from those for TMF.
We explore an approach to twisted generalized cohomology from the point of view of stable homotopy theory and quasicategory theory provided by arXiv:0810.4535. We explain the relationship to the twisted K-theory provided by Fredholm bundles. We show how our approach allows us to twist elliptic cohomology by degree four classes, and more generally by maps to the four-stage Postnikov system BO<0...4>. We also discuss Poincare duality and umkehr maps in this setting.
Let $M$ be a topological monoid with homotopy group completion $Omega BM$. Under a strong homotopy commutativity hypothesis on $M$, we show that $pi_k (Omega BM)$ is the quotient of the monoid of free homotopy classes $[S^k, M]$ by its submonoid of nullhomotopic maps. We give two applications. First, this result gives a concrete description of the Lawson homology of a complex projective variety in terms of point-wise addition of spherical families of effective algebraic cycles. Second, we apply this result to monoids built from the unitary, or general linear, representation spaces of discrete groups, leading to results about lifting continuous families of characters to continuous families of representations.