Do you want to publish a course? Click here

Automatically Tracing Imprecision Causes in JavaScript Static Analysis

189   0   0.0 ( 0 )
 Added by Hongki Lee
 Publication date 2019
and research's language is English
 Authors Hongki Lee




Ask ChatGPT about the research

Researchers have developed various techniques for static analysis of JavaScript to improve analysis precision. To develop such techniques, they first identify causes of the precision losses for unproven properties. While most of the existing work has diagnosed main causes of imprecision in static analysis by manual investigation, manually tracing the imprecision causes is challenging because it requires detailed knowledge of analyzer internals. Recently, several studies proposed to localize the analysis imprecision causes automatically, but these localization techniques work for only specific analysis techniques. In this paper, we present an automatic technique that can trace analysis imprecision causes of JavaScript applications starting from user-selected variables. Given a set of program variables, our technique stops an analysis when any of the variables gets imprecise analysis values. It then traces the imprecise analysis values using intermediate analysis results back to program points where the imprecision first started. Our technique shows the trace information with a new representation called tracing graphs, whose nodes and edges together represent traces from imprecise points to precise points. In order to detect major causes of analysis imprecision automatically, we present four node/edge patterns in tracing graphs for common imprecision causes. We formalized the technique of generating tracing graphs and identifying patterns, and implemented them on SAFE, a state-of-the-art JavaScript static analyzer with various analysis configurations, such as context-sensitivity, loop-sensitivity, and heap cloning. Our evaluation demonstrates that the technique can easily find 96 % of the major causes of the imprecision problems in 17 applications by only automatic detection in tracing graphs using the patterns, and selectively adopting various advanced techniques can eliminate the found causes of imprecision.



rate research

Read More

R is a popular language and programming environment for data scientists. It is increasingly co-packaged with both relational and Hadoop-based data platforms and can often be the most dominant computational component in data analytics pipelines. Recent work has highlighted inefficiencies in executing R programs, both in terms of execution time and memory requirements, which in practice limit the size of data that can be analyzed by R. This paper presents ROSA, a static analysis framework to improve the performance and space efficiency of R programs. ROSA analyzes input programs to determine program properties such as reaching definitions, live variables, aliased variables, and types of variables. These inferred properties enable program transformations such as C++ code translation, strength reduction, vectorization, code motion, in addition to interpretive optimizations such as avoiding redundant object copies and performing in-place evaluations. An empirical evaluation shows substantial reductions by ROSA in execution time and memory consumption over both CRAN R and Microsoft R Open.
We present and evaluate a compiler from Prolog (and extensions) to JavaScript which makes it possible to use (constraint) logic programming to develop the client side of web applications while being compliant with current industry standards. Targeting JavaScript makes (C)LP programs executable in virtually every modern computing device with no additional software requirements from the point of view of the user. In turn, the use of a very high-level language facilitates the development of high-quality, complex software. The compiler is a back end of the Ciao system and supports most of its features, including its module system and its rich language extension mechanism based on packages. We present an overview of the compilation process and a detailed description of the run-time system, including the support for modular compilation into separate JavaScript code. We demonstrate the maturity of the compiler by testing it with complex code such as a CLP(FD) library written in Prolog with attributed variables. Finally, we validate our proposal by measuring the performance of some LP and CLP(FD) benchmarks running on top of major JavaScript engines.
Datalog has become a popular language for writing static analyses. Because Datalog is very limited, some implementations of Datalog for static analysis have extended it with new language features. However, even with these features it is hard or impossible to express a large class of analyses because they use logical formulae to represent program state. FormuLog fills this gap by extending Datalog to represent, manipulate, and reason about logical formulae. We have used FormuLog to implement declarati
Satisfiability modulo theories (SMT) solving has become a critical part of many static analyses, including symbolic execution, refinement type checking, and model checking. We propose Formulog, a domain-specific language that makes it possible to write a range of SMT-based static analyses in a way that is both close to their formal specifications and amenable to high-level optimizations and efficient evaluation. Formulog extends the logic programming language Datalog with a first-order functional language and mechanisms for representing and reasoning about SMT formulas; a novel type system supports the construction of expressive formulas, while ensuring that neither normal evaluation nor SMT solving goes wrong. Our case studies demonstrate that a range of SMT-based analyses can naturally and concisely be encoded in Formulog, and that -- thanks to this encoding -- high-level Datalog-style optimizations can be automatically and advantageously applied to these analyses.
Ethereum has emerged as the most popular smart contract development platform, with hundreds of thousands of contracts stored on the blockchain and covering a variety of application scenarios, such as auctions, trading platforms, and so on. Given their financial nature, security vulnerabilities may lead to catastrophic consequences and, even worse, they can be hardly fixed as data stored on the blockchain, including the smart contract code itself, are immutable. An automated security analysis of these contracts is thus of utmost interest, but at the same time technically challenging for a variety of reasons, such as the specific transaction-oriented programming mechanisms, which feature a subtle semantics, and the fact that the blockchain data which the contract under analysis interacts with, including the code of callers and callees, are not statically known. In this work, we present eThor, the first sound and automated static analyzer for EVM bytecode, which is based on an abstraction of the EVM bytecode semantics based on Horn clauses. In particular, our static analysis supports reachability properties, which we show to be sufficient for capturing interesting security properties for smart contracts (e.g., single-entrancy) as well as contract-specific functional properties. Our analysis is proven sound against a complete semantics of EVM bytecode and an experimental large-scale evaluation on real-world contracts demonstrates that eThor is practical and outperforms the state-of-the-art static analyzers: specifically, eThor is the only one to provide soundness guarantees, terminates on 95% of a representative set of real-world contracts, and achieves an F-measure (which combines sensitivity and specificity) of 89%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا