Do you want to publish a course? Click here

Formulog: Datalog for SMT-Based Static Analysis (Extended Version)

98   0   0.0 ( 0 )
 Added by Aaron Bembenek
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Satisfiability modulo theories (SMT) solving has become a critical part of many static analyses, including symbolic execution, refinement type checking, and model checking. We propose Formulog, a domain-specific language that makes it possible to write a range of SMT-based static analyses in a way that is both close to their formal specifications and amenable to high-level optimizations and efficient evaluation. Formulog extends the logic programming language Datalog with a first-order functional language and mechanisms for representing and reasoning about SMT formulas; a novel type system supports the construction of expressive formulas, while ensuring that neither normal evaluation nor SMT solving goes wrong. Our case studies demonstrate that a range of SMT-based analyses can naturally and concisely be encoded in Formulog, and that -- thanks to this encoding -- high-level Datalog-style optimizations can be automatically and advantageously applied to these analyses.



rate research

Read More

Datalog has become a popular language for writing static analyses. Because Datalog is very limited, some implementations of Datalog for static analysis have extended it with new language features. However, even with these features it is hard or impossible to express a large class of analyses because they use logical formulae to represent program state. FormuLog fills this gap by extending Datalog to represent, manipulate, and reason about logical formulae. We have used FormuLog to implement declarati
RacerD is a static race detector that has been proven to be effective in engineering practice: it has seen thousands of data races fixed by developers before reaching production, and has supported the migration of Facebooks Android app rendering infrastructure from a single-threaded to a multi-threaded architecture. We prove a True Positives Theorem stating that, under certain assumptions, an idealized theoretical version of the analysis never reports a false positive. We also provide an empirical evaluation of an implementation of this analysis, versus the original RacerD. The theorem was motivated in the first case by the desire to understand the observation from production that RacerD was providing remarkably accurate signal to developers, and then the theorem guided further analyzer design decisions. Technically, our result can be seen as saying that the analysis computes an under-approximation of an over-approximation, which is the reverse of the more usual (over of under) situation in static analysis. Until now, static analyzers that are effective in practice but unsound have often been regarded as ad hoc; in contrast, we suggest that, in the future, theorems of this variety might be generally useful in understanding, justifying and designing effective static analyses for bug catching.
Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum(NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on exponentially large quantum states. In this work, we present Gleipnir, a novel methodology toward practically computing verified error bounds in quantum programs. Gleipnir introduces the $(hatrho,delta)$-diamond norm, an error metric constrained by a quantum predicate consisting of the approximate state $hatrho$ and its distance $delta$ to the ideal state $rho$. This predicate $(hatrho,delta)$ can be computed adaptively using tensor networks based on the Matrix Product States. Gleipnir features a lightweight logic for reasoning about error bounds in noisy quantum programs, based on the $(hatrho,delta)$-diamond norm metric. Our experimental results show that Gleipnir is able to efficiently generate tight error bounds for real-world quantum programs with 10 to 100 qubits, and can be used to evaluate the error mitigation performance of quantum compiler transformations.
Quantum computation is a topic of significant recent interest, with practical advances coming from both research and industry. A major challenge in quantum programming is dealing with errors (quantum noise) during execution. Because quantum resources (e.g., qubits) are scarce, classical error correction techniques applied at the level of the architecture are currently cost-prohibitive. But while this reality means that quantum programs are almost certain to have errors, there as yet exists no principled means to reason about erroneous behavior. This paper attempts to fill this gap by developing a semantics for erroneous quantum while-programs, as well as a logic for reasoning about them. This logic permits proving a property we have identified, called $epsilon$-robustness, which characterizes possible distance between an ideal program and an erroneous one. We have proved the logic sound, and showed its utility on several case studies, notably: (1) analyzing the robustness of noi
Gradually typed languages are designed to support both dynamically typed and statically typed programming styles while preserving the benefits of each. While existing gradual type soundness theorems for these languages aim to show that type-based reasoning is preserved when moving from the fully static setting to a gradual one, these theorems do not imply that correctness of type-based refactorings and optimizations is preserved. Establishing correctness of program transformations is technically difficult, and is often neglected in the metatheory of gradual languages. In this paper, we propose an axiomatic account of program equivalence in a gradual cast calculus, which we formalize in a logic we call gradual type theory (GTT). Based on Levys call-by-push-value, GTT gives an axiomatic account of both call-by-value and call-by-name gradual languages. We then prove theorems that justify optimizations and refactorings in gradually typed languages. For example, uniqueness principles for gradual type connectives show that if the $betaeta$ laws hold for a connective, then casts between that connective must be equivalent to the lazy cast semantics. Contrapositively, this shows that eager cast semantics violates the extensionality of function types. As another example, we show that gradual upcasts are pure and dually, gradual downcasts are strict. We show the consistency and applicability of our theory by proving that an implementation using the lazy cast semantics gives a logical relations model of our type theory, where equivalence in GTT implies contextual equivalence of the programs. Since GTT also axiomatizes the dynamic gradual guarantee, our model also establishes this central theorem of gradual typing. The model is parametrized by the implementation of the dynamic types, and so gives a family of implementations that validate type-based optimization and the gradual guarantee.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا