Do you want to publish a course? Click here

An optimal security management framework for backhaul-aware 5G-Vehicle to Everything (V2X)

150   0   0.0 ( 0 )
 Added by Vishal Sharma
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Cellular (C) setups facilitate the connectivity amongst the devices with better provisioning of services to its users. Vehicular networks are one of the representative setups that aim at expanding their functionalities by using the available cellular systems like Long Term Evolution (LTE)-based Evolved Universal Terrestrial Radio Access Network (E-UTRAN) as well as the upcoming Fifth Generation (5G)-based functional architecture. The vehicular networks include Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), Vehicle to Pedestrian (V2P) and Vehicle to Network (V2N), all of which are referred to as Vehicle to Everything (V2X). 5G has dominated the vehicular network and most of the upcoming research is motivated towards the fully functional utilization of 5G-V2X. Despite that, credential management and edge-initiated security are yet to be resolved under 5G-V2X. To further understand the issue, this paper presents security management as a principle of sustainability and key-management. The performance tradeoff is evaluated with the key-updates required to maintain a secure connection between the vehicles and the 5G-terminals. The proposed approach aims at the utilization of high-speed mmWave-based backhaul for enhancing the security operations between the core and the sub-divided functions at the edge of the network through a dual security management framework. The evaluations are conducted using numerical simulations, which help to understand the impact on the sustainability of connections as well as identification of the fail-safe points for secure and fast operations. Furthermore, the evaluations help to follow the multiple tradeoffs of security and performance based on the metrics like mandatory key updates, the range of operations and the probability of connectivity.



rate research

Read More

Security is a primary concern for the networks aiming at the utilization of Cellular (C) services for connecting Vehicles to Everything (V2X). At present, C-V2X is observing a paradigm shift from Long Term Evolution (LTE) - Evolved Universal Terrestrial Radio Access Network (E-UTRAN) to Fifth Generation (5G) based functional architecture. However, security and credential management are still concerns to be resolved under 5G-V2X. A sizably voluminous number of key updates and non-availability of sub-functions at the edge cause adscititious overheads and decrement the performance while alarming the possibilities of variants of cyber attacks. In this paper, security management is studied as a principle of sustainability and its tradeoff is evaluated with the number of key-updates required to maintain an authenticated connection of a vehicle to the 5G-terminals keeping intact the security functions at the backhaul. A numerical study is presented to determine the claims and understand the proposed tradeoff.
The rapid involution of the mobile generation with incipient data networking capabilities and utilization has exponentially increased the data traffic volumes. Such traffic drains various key issues in 5G mobile backhaul networks. Security of mobile backhaul is of utmost importance; however, there are a limited number of articles, which have explored such a requirement. This paper discusses the potential design issues and key challenges of the secure 5G mobile backhaul architecture. The comparisons of the existing state-of-the-art solutions for secure mobile backhaul, together with their major contributions have been explored. Furthermore, the paper discussed various key issues related to Quality of Service (QoS), routing and scheduling, resource management, capacity enhancement, latency, security-management, and handovers using mechanisms like Software Defined Networking and millimeter Wave technologies. Moreover, the trails of research challenges and future directions are additionally presented.
Cellular-Vehicle to Everything (C-V2X) aims at resolving issues pertaining to the traditional usability of Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) networking. Specifically, C-V2X lowers the number of entities involved in vehicular communications and allows the inclusion of cellular-security solutions to be applied to V2X. For this, the evolvement of LTE-V2X is revolutionary, but it fails to handle the demands of high throughput, ultra-high reliability, and ultra-low latency alongside its security mechanisms. To counter this, 5G-V2X is considered as an integral solution, which not only resolves the issues related to LTE-V2X but also provides a function-based network setup. Several reports have been given for the security of 5G, but none of them primarily focuses on the security of 5G-V2X. This article provides a detailed overview of 5G-V2X with a security-based comparison to LTE-V2X. A novel Security Reflex Function (SRF)-based architecture is proposed and several research challenges are presented related to the security of 5G-V2X. Furthermore, the article lays out requirements of Ultra-Dense and Ultra-Secure (UD-US) transmissions necessary for 5G-V2X.
The next generations of mobile networks will be deployed as ultra-dense networks, to match the demand for increased capacity and the challenges that communications in the higher portion of the spectrum (i.e., the mmWave band) introduce. Ultra-dense networks, however, require pervasive, high-capacity backhaul solutions, and deploying fiber optic to all base stations is generally considered to be too expensive for network operators. The 3rd Generation Partnership Project (3GPP) has thus introduced Integrated Access and Backhaul (IAB), a wireless backhaul solution in which the access and backhaul links share the same hardware, protocol stack, and also spectrum. The multiplexing of different links in the same frequency bands, however, introduces interference and capacity sharing issues, thus calling for the introduction of advanced scheduling and coordination schemes. This paper proposes a semi-centralized resource allocation scheme for IAB networks, designed to be flexible, with low complexity, and compliant with the 3GPP IAB specifications. We develop a version of the Maximum Weighted Matching (MWM) problem that can be applied on a spanning tree that represents the IAB network and whose complexity is linear in the number of IAB-nodes. The proposed solution is compared with state-of-the-art distributed approaches through end-to-end, full-stack system-level simulations with a 3GPP-compliant channel model, protocol stack, and a diverse set of user applications. The results show how that our scheme can increase the throughput of cell-edge users up to 5 times, while decreasing the overall network congestion with an end-to-end delay reduction of up to 25 times.
Bring Your Own Device (BYOD) has become the new norm in enterprise networks, but BYOD security remains a top concern. Context-aware security, which enforces access control based on dynamic runtime context, holds much promise. Recent work has developed SDN solutions to collect device context for network-wide access control in a central controller. However, the central controller poses a bottleneck that can become an attack target, and processing context changes at remote software has low agility. We present a new paradigm, programmable in-network security (Poise), which is enabled by the emergence of programmable switches. At the heart of Poise is a novel switch primitive, which can be programmed to support a wide range of context-aware policies in hardware. Users of Poise specify concise policies, and Poise compiles them into different instantiations of the security primitive in P4. Compared to centralized SDN defenses, Poise is resilient to control plane saturation attacks, and it dramatically increases defense agility.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا