Do you want to publish a course? Click here

Security of 5G-Mobile Backhaul Networks: A Survey

146   0   0.0 ( 0 )
 Added by Vishal Sharma
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The rapid involution of the mobile generation with incipient data networking capabilities and utilization has exponentially increased the data traffic volumes. Such traffic drains various key issues in 5G mobile backhaul networks. Security of mobile backhaul is of utmost importance; however, there are a limited number of articles, which have explored such a requirement. This paper discusses the potential design issues and key challenges of the secure 5G mobile backhaul architecture. The comparisons of the existing state-of-the-art solutions for secure mobile backhaul, together with their major contributions have been explored. Furthermore, the paper discussed various key issues related to Quality of Service (QoS), routing and scheduling, resource management, capacity enhancement, latency, security-management, and handovers using mechanisms like Software Defined Networking and millimeter Wave technologies. Moreover, the trails of research challenges and future directions are additionally presented.



rate research

Read More

Cellular (C) setups facilitate the connectivity amongst the devices with better provisioning of services to its users. Vehicular networks are one of the representative setups that aim at expanding their functionalities by using the available cellular systems like Long Term Evolution (LTE)-based Evolved Universal Terrestrial Radio Access Network (E-UTRAN) as well as the upcoming Fifth Generation (5G)-based functional architecture. The vehicular networks include Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), Vehicle to Pedestrian (V2P) and Vehicle to Network (V2N), all of which are referred to as Vehicle to Everything (V2X). 5G has dominated the vehicular network and most of the upcoming research is motivated towards the fully functional utilization of 5G-V2X. Despite that, credential management and edge-initiated security are yet to be resolved under 5G-V2X. To further understand the issue, this paper presents security management as a principle of sustainability and key-management. The performance tradeoff is evaluated with the key-updates required to maintain a secure connection between the vehicles and the 5G-terminals. The proposed approach aims at the utilization of high-speed mmWave-based backhaul for enhancing the security operations between the core and the sub-divided functions at the edge of the network through a dual security management framework. The evaluations are conducted using numerical simulations, which help to understand the impact on the sustainability of connections as well as identification of the fail-safe points for secure and fast operations. Furthermore, the evaluations help to follow the multiple tradeoffs of security and performance based on the metrics like mandatory key updates, the range of operations and the probability of connectivity.
Security is a primary concern for the networks aiming at the utilization of Cellular (C) services for connecting Vehicles to Everything (V2X). At present, C-V2X is observing a paradigm shift from Long Term Evolution (LTE) - Evolved Universal Terrestrial Radio Access Network (E-UTRAN) to Fifth Generation (5G) based functional architecture. However, security and credential management are still concerns to be resolved under 5G-V2X. A sizably voluminous number of key updates and non-availability of sub-functions at the edge cause adscititious overheads and decrement the performance while alarming the possibilities of variants of cyber attacks. In this paper, security management is studied as a principle of sustainability and its tradeoff is evaluated with the number of key-updates required to maintain an authenticated connection of a vehicle to the 5G-terminals keeping intact the security functions at the backhaul. A numerical study is presented to determine the claims and understand the proposed tradeoff.
The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data-rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing-based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, CATMOSIS, which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.
164 - Xiaohu Ge , Song Tu , Guoqiang Mao 2016
The wireless backhaul network provides an attractive solution for the urban deployment of fifth generation (5G) wireless networks that enables future ultra dense small cell networks to meet the ever-increasing user demands. Optimal deployment and management of 5G wireless backhaul networks is an interesting and challenging issue. In this paper we propose the optimal gateways deployment and wireless backhaul route schemes to maximize the cost efficiency of 5G wireless backhaul networks. In generally, the changes of gateways deployment and wireless backhaul route are presented in different time scales. Specifically, the number and locations of gateways are optimized in the long time scale of 5G wireless backhaul networks. The wireless backhaul routings are optimized in the short time scale of 5G wireless backhaul networks considering the time-variant over wireless channels. Numerical results show the gateways and wireless backhaul route optimization significantly increases the cost efficiency of 5G wireless backhaul networks. Moreover, the cost efficiency of proposed optimization algorithm is better than that of conventional and most widely used shortest path (SP) and Bellman-Ford (BF) algorithms in 5G wireless backhaul networks.
With an enormous range of applications, Internet of Things (IoT) has magnetized industries and academicians from everywhere. IoT facilitates operations through ubiquitous connectivity by providing Internet access to all the devices with computing capabilities. With the evolution of wireless infrastructure, the focus from simple IoT has been shifted to smart, connected and mobile IoT (M-IoT) devices and platforms, which can enable low-complexity, low-cost and efficient computing through sensors, machines, and even crowdsourcing. All these devices can be grouped under a common term of M-IoT. Even though the positive impact on applications has been tremendous, security, privacy and trust are still the major concerns for such networks and an insufficient enforcement of these requirements introduces non-negligible threats to M-IoT devices and platforms. Thus, it is important to understand the range of solutions which are available for providing a secure, privacy-compliant, and trustworthy mechanism for M-IoT. There is no direct survey available, which focuses on security, privacy, trust, secure protocols, physical layer security and handover protections in M-IoT. This paper covers such requisites and presents comparisons of state-the-art solutions for IoT which are applicable to security, privacy, and trust in smart and connected M-IoT networks. Apart from these, various challenges, applications, advantages, technologies, standards, open issues, and roadmap for security, privacy and trust are also discussed in this paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا