Do you want to publish a course? Click here

Latent Multi-view Semi-Supervised Classification

142   0   0.0 ( 0 )
 Added by Zhao Kang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

To explore underlying complementary information from multiple views, in this paper, we propose a novel Latent Multi-view Semi-Supervised Classification (LMSSC) method. Unlike most existing multi-view semi-supervised classification methods that learn the graph using original features, our method seeks an underlying latent representation and performs graph learning and label propagation based on the learned latent representation. With the complementarity of multiple views, the latent representation could depict the data more comprehensively than every single view individually, accordingly making the graph more accurate and robust as well. Finally, LMSSC integrates latent representation learning, graph construction, and label propagation into a unified framework, which makes each subtask optimized. Experimental results on real-world benchmark datasets validate the effectiveness of our proposed method.



rate research

Read More

Graphs have become increasingly popular in modeling structures and interactions in a wide variety of problems during the last decade. Graph-based clustering and semi-supervised classification techniques have shown impressive performance. This paper proposes a graph learning framework to preserve both the local and global structure of data. Specifically, our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure. Furthermore, most existing graph-based methods conduct clustering and semi-supervised classification on the graph learned from the original data matrix, which doesnt have explicit cluster structure, thus they might not achieve the optimal performance. By considering rank constraint, the achieved graph will have exactly $c$ connected components if there are $c$ clusters or classes. As a byproduct of this, graph learning and label inference are jointly and iteratively implemented in a principled way. Theoretically, we show that our model is equivalent to a combination of kernel k-means and k-means methods under certain condition. Extensive experiments on clustering and semi-supervised classification demonstrate that the proposed method outperforms other state-of-the-art methods.
We present a plug-in replacement for batch normalization (BN) called exponential moving average normalization (EMAN), which improves the performance of existing student-teacher based self- and semi-supervised learning techniques. Unlike the standard BN, where the statistics are computed within each batch, EMAN, used in the teacher, updates its statistics by exponential moving average from the BN statistics of the student. This design reduces the intrinsic cross-sample dependency of BN and enhances the generalization of the teacher. EMAN improves strong baselines for self-supervised learning by 4-6/1-2 points and semi-supervised learning by about 7/2 points, when 1%/10% supervised labels are available on ImageNet. These improvements are consistent across methods, network architectures, training duration, and datasets, demonstrating the general effectiveness of this technique. The code is available at https://github.com/amazon-research/exponential-moving-average-normalization.
While neural networks for learning representation of multi-view data have been previously proposed as one of the state-of-the-art multi-view dimension reduction techniques, how to make the representation discriminative with only a small amount of labeled data is not well-studied. We introduce a semi-supervised neural network model, named Multi-view Discriminative Neural Network (MDNN), for multi-view problems. MDNN finds nonlinear view-specific mappings by projecting samples to a common feature space using multiple coupled deep networks. It is capable of leveraging both labeled and unlabeled data to project multi-view data so that samples from different classes are separated and those from the same class are clustered together. It also uses the inter-view correlation between views to exploit the available information in both the labeled and unlabeled data. Extensive experiments conducted on four datasets demonstrate the effectiveness of the proposed algorithm for multi-view semi-supervised learning.
Reinforcement learning requires manual specification of a reward function to learn a task. While in principle this reward function only needs to specify the task goal, in practice reinforcement learning can be very time-consuming or even infeasible unless the reward function is shaped so as to provide a smooth gradient towards a successful outcome. This shaping is difficult to specify by hand, particularly when the task is learned from raw observations, such as images. In this paper, we study how we can automatically learn dynamical distances: a measure of the expected number of time steps to reach a given goal state from any other state. These dynamical distances can be used to provide well-shaped reward functions for reaching new goals, making it possible to learn complex tasks efficiently. We show that dynamical distances can be used in a semi-supervised regime, where unsupervised interaction with the environment is used to learn the dynamical distances, while a small amount of preference supervision is used to determine the task goal, without any manually engineered reward function or goal examples. We evaluate our method both on a real-world robot and in simulation. We show that our method can learn to turn a valve with a real-world 9-DoF hand, using raw image observations and just ten preference labels, without any other supervision. Videos of the learned skills can be found on the project website: https://sites.google.com/view/dynamical-distance-learning.
Recent advances in one-shot semi-supervised learning have lowered the barrier for deep learning of new applications. However, the state-of-the-art for semi-supervised learning is slow to train and the performance is sensitive to the choices of the labeled data and hyper-parameter values. In this paper, we present a one-shot semi-supervised learning method that trains up to an order of magnitude faster and is more robust than state-of-the-art methods. Specifically, we show that by combining semi-supervised learning with a one-stage, single network version of self-training, our FROST methodology trains faster and is more robust to choices for the labeled samples and changes in hyper-parameters. Our experiments demonstrate FROSTs capability to perform well when the composition of the unlabeled data is unknown; that is when the unlabeled data contain unequal numbers of each class and can contain out-of-distribution examples that dont belong to any of the training classes. High performance, speed of training, and insensitivity to hyper-parameters make FROST the most practical method for one-shot semi-supervised training. Our code is available at https://github.com/HelenaELiu/FROST.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا