No Arabic abstract
In conformal field theory in Minkowski momentum space, the 3-point correlation functions of local operators are completely fixed by symmetry. Using Ward identities together with the existence of a Lorentzian operator product expansion (OPE), we show that the Wightman function of three scalar operators is a double hypergeometric series of the Appell $F_4$ type. We extend this simple closed-form expression to the case of two scalar operators and one traceless symmetric tensor with arbitrary spin. Time-ordered and partially-time-ordered products are constructed in a similar fashion and their relation with the Wightman function is discussed.
General principles of quantum field theory imply that there exists an operator product expansion (OPE) for Wightman functions in Minkowski momentum space that converges for arbitrary kinematics. This convergence is guaranteed to hold in the sense of a distribution, meaning that it holds for correlation functions smeared by smooth test functions. The conformal blocks for this OPE are conceptually extremely simple: they are products of 3-point functions. We construct the conformal blocks in 2-dimensional conformal field theory and show that the OPE in fact converges pointwise to an ordinary function in a specific kinematic region. Using microcausality, we also formulate a bootstrap equation directly in terms of momentum space Wightman functions.
The decomposition of 4-point correlation functions into conformal partial waves is a central tool in the study of conformal field theory. We compute these partial waves for scalar operators in Minkowski momentum space, and find a closed-form result valid in arbitrary space-time dimension $d geq 3$ (including non-integer $d$). Each conformal partial wave is expressed as a sum over ordinary spin partial waves, and the coefficients of this sum factorize into a product of vertex functions that only depend on the conformal data of the incoming, respectively outgoing operators. As a simple example, we apply this conformal partial wave decomposition to the scalar box integral in $d = 4$ dimensions.
We derive a nonperturbative, convergent operator product expansion (OPE) for null-integrated operators on the same null plane in a CFT. The objects appearing in the expansion are light-ray operators, whose matrix elements can be computed by the generalized Lorentzian inversion formula. For example, a product of average null energy (ANEC) operators has an expansion in the light-ray operators that appear in the stress-tensor OPE. An important application is to collider event shapes. The light-ray OPE gives a nonperturbative expansion for event shapes in special functions that we call celestial blocks. As an example, we apply the celestial block expansion to energy-energy correlators in N=4 Super Yang-Mills theory. Using known OPE data, we find perfect agreement with previous results both at weak and strong coupling, and make new predictions at weak coupling through 4 loops (NNNLO).
We holographically calculate two-point functions in the pseudo-conformal universe, an early universe alternative to inflation. The pseudo-conformal universe can be modeled as a defect conformal field theory, where the reheating surface is a codimension-1 spacelike defect which breaks the conformal algebra to a de Sitter subalgebra. The dual spacetime geometries are domain walls with de-Sitter symmetry in an asymptotically anti-de Sitter spacetime. We compute 2-point functions of scalars and stress tensors by solving the linearized equations for scalar and tensor fluctuations about these backgrounds.
We study the momentum-space 4-point correlation function of identical scalar operators in conformal field theory. Working specifically with null momenta, we show that its imaginary part admits an expansion in conformal blocks. The blocks are polynomials in the cosine of the scattering angle, with degree $ell$ corresponding to the spin of the intermediate operator. The coefficients of these polynomials are obtained in a closed-form expression for arbitrary spacetime dimension $d > 2$. If the scaling dimension of the intermediate operator is large, the conformal block reduces to a Gegenbauer polynomial $mathcal{C}_ell^{(d-2)/2}$. If on the contrary the scaling dimension saturates the unitarity bound, the block is different Gegenbauer polynomial $mathcal{C}_ell^{(d-3)/2}$. These results are then used as an inversion formula to compute OPE coefficients in a free theory example.