General principles of quantum field theory imply that there exists an operator product expansion (OPE) for Wightman functions in Minkowski momentum space that converges for arbitrary kinematics. This convergence is guaranteed to hold in the sense of a distribution, meaning that it holds for correlation functions smeared by smooth test functions. The conformal blocks for this OPE are conceptually extremely simple: they are products of 3-point functions. We construct the conformal blocks in 2-dimensional conformal field theory and show that the OPE in fact converges pointwise to an ordinary function in a specific kinematic region. Using microcausality, we also formulate a bootstrap equation directly in terms of momentum space Wightman functions.
In conformal field theory in Minkowski momentum space, the 3-point correlation functions of local operators are completely fixed by symmetry. Using Ward identities together with the existence of a Lorentzian operator product expansion (OPE), we show that the Wightman function of three scalar operators is a double hypergeometric series of the Appell $F_4$ type. We extend this simple closed-form expression to the case of two scalar operators and one traceless symmetric tensor with arbitrary spin. Time-ordered and partially-time-ordered products are constructed in a similar fashion and their relation with the Wightman function is discussed.
Motivated by applications to the study of ultracold atomic gases near the unitarity limit, we investigate the structure of the operator product expansion (OPE) in non-relativistic conformal field theories (NRCFTs). The main tool used in our analysis is the representation theory of charged (i.e. non-zero particle number) operators in the NRCFT, in particular the mapping between operators and states in a non-relativistic radial quantization Hilbert space. Our results include: a determination of the OPE coefficients of descendant operators in terms of those of the underlying primary state, a demonstration of convergence of the (imaginary time) OPE in certain kinematic limits, and an estimate of the decay rate of the OPE tail inside matrix elements which, as in relativistic CFTs, depends exponentially on operator dimensions. To illustrate our results we consider several examples, including a strongly interacting field theory of bosons tuned to the unitarity limit, as well as a class of holographic models. Given the similarity with known statements about the OPE in SO(2,d) invariant field theories, our results suggest the existence of a bootstrap approach to constraining NRCFTs, with applications to bound state spectra and interactions. We briefly comment on a possible implementation of this non-relativistic conformal bootstrap program.
Conformal field theories have been long known to describe the fascinating universal physics of scale invariant critical points. They describe continuous phase transitions in fluids, magnets, and numerous other materials, while at the same time sit at the heart of our modern understanding of quantum field theory. For decades it has been a dream to study these intricate strongly coupled theories nonperturbatively using symmetries and other consistency conditions. This idea, called the conformal bootstrap, saw some successes in two dimensions but it is only in the last ten years that it has been fully realized in three, four, and other dimensions of interest. This renaissance has been possible both due to significant analytical progress in understanding how to set up the bootstrap equations and the development of numerical techniques for finding or constraining their solutions. These developments have led to a number of groundbreaking results, including world record determinations of critical exponents and correlation function coefficients in the Ising and $O(N)$ models in three dimensions. This article will review these exciting developments for newcomers to the bootstrap, giving an introduction to conformal field theories and the theory of conformal blocks, describing numerical techniques for the bootstrap based on convex optimization, and summarizing in detail their applications to fixed points in three and four dimensions with no or minimal supersymmetry.
The decomposition of 4-point correlation functions into conformal partial waves is a central tool in the study of conformal field theory. We compute these partial waves for scalar operators in Minkowski momentum space, and find a closed-form result valid in arbitrary space-time dimension $d geq 3$ (including non-integer $d$). Each conformal partial wave is expressed as a sum over ordinary spin partial waves, and the coefficients of this sum factorize into a product of vertex functions that only depend on the conformal data of the incoming, respectively outgoing operators. As a simple example, we apply this conformal partial wave decomposition to the scalar box integral in $d = 4$ dimensions.
Conformal field theories play a central role in theoretical physics with many applications ranging from condensed matter to string theory. The conformal bootstrap studies conformal field theories using mathematical consistency conditions and has seen great progress over the last decade. In this thesis we present an implementation of analytic bootstrap methods for perturbative conformal field theories in dimensions greater than two, which we achieve by combining large spin perturbation theory with the Lorentzian inversion formula. In the presence of a small expansion parameter, not necessarily the coupling constant, we develop this into a systematic framework, applicable to a wide range of theories. The first two chapters provide the necessary background and a review of the analytic bootstrap. This is followed by a chapter which describes the method in detail, taking the form of a practical guide to large spin perturbation theory by means of a step-by-step implementation. The second part of the thesis presents several explicit implementations of the framework, taking examples from a number of well-studied conformal field theories. We show how many literature results can be reproduced from a purely bootstrap perspective and how a variety of new results can be derived.