No Arabic abstract
The decomposition of 4-point correlation functions into conformal partial waves is a central tool in the study of conformal field theory. We compute these partial waves for scalar operators in Minkowski momentum space, and find a closed-form result valid in arbitrary space-time dimension $d geq 3$ (including non-integer $d$). Each conformal partial wave is expressed as a sum over ordinary spin partial waves, and the coefficients of this sum factorize into a product of vertex functions that only depend on the conformal data of the incoming, respectively outgoing operators. As a simple example, we apply this conformal partial wave decomposition to the scalar box integral in $d = 4$ dimensions.
We propose a method to holographically compute the conformal partial waves in any decomposition of correlation functions of primary operators in conformal field theories using open Wilson network operators in the holographic gravitational dual. The Wilson operators are the gravitational ones where gravity is written as a gauge theory in the first order Hilbert-Palatini formalism. We apply this method to compute the global conformal blocks and partial waves in 2d CFTs reproducing many of the known results.
We study the momentum-space 4-point correlation function of identical scalar operators in conformal field theory. Working specifically with null momenta, we show that its imaginary part admits an expansion in conformal blocks. The blocks are polynomials in the cosine of the scattering angle, with degree $ell$ corresponding to the spin of the intermediate operator. The coefficients of these polynomials are obtained in a closed-form expression for arbitrary spacetime dimension $d > 2$. If the scaling dimension of the intermediate operator is large, the conformal block reduces to a Gegenbauer polynomial $mathcal{C}_ell^{(d-2)/2}$. If on the contrary the scaling dimension saturates the unitarity bound, the block is different Gegenbauer polynomial $mathcal{C}_ell^{(d-3)/2}$. These results are then used as an inversion formula to compute OPE coefficients in a free theory example.
We study conformal partial waves (CPWs) in Mellin space with totally symmetric external operators of arbitrary integer spin. The exchanged spin is arbitrary, and includes mixed symmetry and (partially)-conserved representations. In a basis of CPWs recently introduced in arXiv:1702.08619, we find a remarkable factorisation of the external spin dependence in their Mellin representation. This property allows a relatively straightforward study of inversion formulae to extract OPE data from the Mellin representation of spinning 4pt correlators and in particular, to extract closed-form expressions for crossing kernels of spinning CPWs in terms of the hypergeometric function ${}_4F_3$. We consider numerous examples involving both arbitrary internal and external spins, and for both leading and sub-leading twist operators. As an application, working in general $d$ we extract new results for ${cal O}left(1/Nright)$ anomalous dimensions of double-trace operators induced by double-trace deformations constructed from single-trace operators of generic twist and integer spin. In particular, we extract the anomalous dimensions of double-trace operators $[mathcal{O}_JPhi]_{n,l}$ with ${cal O}_J$ a single-trace operator of integer spin $J$.
In conformal field theory in Minkowski momentum space, the 3-point correlation functions of local operators are completely fixed by symmetry. Using Ward identities together with the existence of a Lorentzian operator product expansion (OPE), we show that the Wightman function of three scalar operators is a double hypergeometric series of the Appell $F_4$ type. We extend this simple closed-form expression to the case of two scalar operators and one traceless symmetric tensor with arbitrary spin. Time-ordered and partially-time-ordered products are constructed in a similar fashion and their relation with the Wightman function is discussed.
General principles of quantum field theory imply that there exists an operator product expansion (OPE) for Wightman functions in Minkowski momentum space that converges for arbitrary kinematics. This convergence is guaranteed to hold in the sense of a distribution, meaning that it holds for correlation functions smeared by smooth test functions. The conformal blocks for this OPE are conceptually extremely simple: they are products of 3-point functions. We construct the conformal blocks in 2-dimensional conformal field theory and show that the OPE in fact converges pointwise to an ordinary function in a specific kinematic region. Using microcausality, we also formulate a bootstrap equation directly in terms of momentum space Wightman functions.