Do you want to publish a course? Click here

Status of commissioning stabilized infrared Fizeau interferometry with LBTI

429   0   0.0 ( 0 )
 Added by Eckhart Spalding
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Large Binocular Telescope Interferometer (LBTI) has the longest baseline in the world, 22.7 m, for performing astronomical interferometry in Fizeau mode, which involves beam combination in a focal plane and preserves a wide field-of-view. LBTI can operate in this mode at wavelengths of 1.2 to 5 and 8 to 12 {mu}m, making it a unique platform for carrying out high-resolution imaging of circumstellar disks, evolved stars, solar system objects, and possibly searches for planets, in the thermal infrared. Over the past five years, LBTI has carried out a considerable number of interferometric observations by combining the beams near a pupil plane to carry out nulling interferometry. This mode is useful for measuring small luminosity level offsets, such as those of exozodiacal dust disks. The Fizeau mode, by contrast, is more useful for generating an image of the target because it has more (u, v) (Fourier) plane coverage. However, the Fizeau mode is still in an ongoing process of commissioning. Sensitive Fizeau observations require active phase control, increased automation, and the removal of non-common-path aberrations (NCPA) between the science and phase beams. This increased level of control will increase the fringe contrast, enable longer integrations, and reduce time overheads. We are in the process of writing a correction loop to remove NCPA, and have carried out tests on old and synthetic data. We have also carried out on-sky Fizeau engineering tests in fall 2018 and spring 2019. In this article, we share lessons learned and strategies developed as a result of these tests.



rate research

Read More

62 - D. Defr`ere , P. Hinz , A. Skemer 2015
The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument of the LBT designed for high-sensitivity, high-contrast, and high-resolution infrared (1.5-13 $mu$m) imaging of nearby planetary systems. To carry out a wide range of high-spatial resolution observations, it can combine the two AO-corrected 8.4-m apertures of the LBT in various ways including direct (non-interferometric) imaging, coronagraphy (APP and AGPM), Fizeau imaging, non-redundant aperture masking, and nulling interferometry. It also has broadband, narrowband, and spectrally dispersed capabilities. In this paper, we review the performance of these modes in terms of exoplanet science capabilities and describe recent instrumental milestones such as first-light Fizeau images (with the angular resolution of an equivalent 22.8-m telescope) and deep interferometric nulling observations.
134 - D. Defr`ere , P. Hinz , E. Downey 2015
The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 um). PHASECam is LBTIs near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).
We introduce a method for using Fizeau interferometry to measure the intrinsic resolving power of a diffraction grating. This method is more accurate than traditional techniques based on a long-trace profiler (LTP), since it is sensitive to long-distance phase errors not revealed by a d-spacing map. We demonstrate 50,400 resolving power for a mechanically ruled XUV grating from Inprentus, Inc.
The VERITAS Imaging Air Cherenkov Telescope array (IACT) was augmented in 2019 with high-speed focal plane electronics to allow the use of VERITAS for Stellar Intensity Interferometry (SII) observations. Since that time, several improvements have been implemented to increase the sensitivity of the VERITAS Stellar Intensity Interferometer (VSII) and increase the speed of nightly data processing. This poster will describe the use of IACT arrays for performing ultra-high resolution (sub-milliarcsecond) astronomical observations at short visible wavelengths. The poster presentation will include a description of the VERITAS-SII focal plane, data acquisition, and data analysis systems. The poster concludes with a description of plans for future upgrades of the VSII instrument.
The Large Binocular Telescope Interferometer (LBTI) can perform Fizeau interferometry in the focal plane, which accesses spatial information out to the LBTs full 22.7-m edge-to-edge baseline. This mode has previously been used to obtain science data, but has been limited to observations where the optical path difference (OPD) between the two beams is not controlled, resulting in unstable fringes on the science detectors. To maximize the science return, we are endeavoring to stabilize the OPD and tip-tilt variations and make the LBTI Fizeau mode optimized and routine. Here we outline the optical configuration of LBTIs Fizeau mode and our strategy for commissioning this observing mode.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا